Cho đường tròn (O,R) có R =3 và đường thẳng d không điểm chung với đường tròn. Gọi M là điểm thuộc thuộc đường thẳng d. Kẻ hai tiếp tuyến MA ,MA tới tại đường tròn. Hạ OH vuông d tại H. Nối AB cắt OH tại K, cắt OH tại K,cắt OM tại I.Tia OM cắt đường tròn (O,R) tại E.
a) Chứng minh tứ giác AOBM nội tiếp
b)Chứng minh AB vuông góc với OM từ đó c/m OK.OH=OI.OM.
c) Chứng minh E là tâm đường tròn nội tiếp tam giác MAB
Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn (O). Từ một điểm M bất kì trên đường thẳng d, kẻ các tiếp tuyến MA và MB tới đường tròn (A và B là các tiếp điểm). Kẻ OH vuông góc với đường thẳng d ( H thuộc d). Đường thẳng AB cắt OH và OM lần lượt tại K và I. Tia OM cắt (O) tại E
a) chứng minh AMOH là tứ giác nội tiếp
b) Cm OK.OH=OI.OM và E là tâm đường tròn nội tiếp tam giác MAB
c) Xác định vị trí điểm M trên d để diện tích tam giác OIK đạt max
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB và cát tuyến MCD với đường tròn (O), trong đó điểm C ở giữa hai điểm M, D. Đường thẳng qua điểm C và vuông góc với OA cắt AB tại H. Gọi I là trung điểm của dây CD.
Chứng minh : HI // AD
Cho đường tròn (O;R). Lấy K là 1 điểm bên ngoài đường tròn, vẽ 2 tiếp tuyến KA và KB. Gọi M là giao điểm của AB và OK, đường thẳng qua M // với KB cắt cung nhỏ AB tại C. Tia KC cắt đường tròn (O) tại D ( D khác C) , cắt AB tại I, gọi H là trung điểm của CD.
a, C/m: 5 điểm K, A, O, H, B cùng thuộc 1 đường tròn
b, C/m: Tứ giác ODAI nội tiếp
c, C/m: OM.OK + KC.KD = KO2
d, C/m: MA là phân giác của góc CMD
e, Cho R = 5cm, KO = 10cm. Tính diện tích hình viên phân giới hạn bởi dây AB và cung nhỏ AB
cho đường tròn (O) bán kính R , đường thẳng d không đi qua O và cắt đường tròn tại 2 điểm A và B, từ 1 điểm C thuộc đường thẳng d, A nằm giữa B và C, vẽ tiếp tuyến CN với đường tròn , N thuộc cung lớn AB . Gọi E là trung điểm của AB
a) cm 4 điểm C,E,O,N cùng thuộc 1 đường tròn
b) cm CN2 = CA.CB
c) Gọi H là hình chiếu của N trên OC . cm \(\widehat{OAB}\)= \(\widehat{CHA}\).
Tia CO cắt đường tròn (O) tại 2 điểm D,I , I nằm giữa C và D. Cm IC.DH = DC.IH
Cho điểm M nằm ngoài đường trong (O; R) sao cho OM = 2R. Qua M vẽ hai tiếp tuyến MA, MB với đường tròn (O; R) (A, B là các tiếp điểm) và kẻ cát tuyến MCD của đường tròn (O; R) cắt đoạn thẳng OA (C nằm giữa M và D). Gọi I là trung điểm của dây cung CD và H là giao điểm của AB với OM.
a) Góc MAB có phải là góc tạo bởi tia tiếp tuyến và dây cung của (O) ? vì sao?
b) Tính góc MOA và số đo cung AB
c) Chứng minh: MC.MD=MH.MO
d) Chứng minh HA là phân giác của góc DHC
e) Khi cát tuyến MCD thay đổi thì trọng tâm tam giác ACD chạy trên đường nào?
Giải giúp mình câu e với, mình cảm ơn.
Cho (O;R) điểm M nằm ngoài đường tròn sao cho OM=2R. Kẻ 2 tiếp tuyến MA;MB tới (O), OM cắt AB tại H, HD vuông góc với MA tại D. Điểm C thuộc cung nhỏ AB. Tiếp tuyến tại C cắt MA,MB lần lượt tại E và F . Tính theo R chu vi tam giác MFE
Từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AM và AN đến đường tròn (M và N là tiếp điểm). Đường thẳng MO cắt đường tròn tại điểm P. Đường thẳng vuông góc với OA tại O cắt AN tại C và cắt AM tại B.
1) Chứng minh bốn điểm A, M, O, N cùng thuộc một đường tròn.
2) Chứng minh CP là tiếp tuyến tại P với đường tròn. Suy ra MB= CN .
P/S: Vẽ cho mình hình với ạ vì chủ yếu mình cần hình,phần a ko cần đâu chỉ cần làm phần b thôi ạ
Cho (O,R) đường kính AB, dây AC không đi qua tâm. Gọi H là trung điểm AC
a, Chứng minh OH//BC
b,Tiếp tuyến tại C (O) cắt OH tại M. Chứng minh MA là tiếp tuyến của đường tròn tâm O
c, Vẽ CK vuông góc với AB tại K. GỌi I là trung điểm của CK, đặt góc BAC = góc anfa. Chứng minh IK=R.sin anfa. cos anfa
d, Chứng minh 3 điểm M,I,B thẳng hàng
Ai giúp mình ý d vs ạ !