a)
b) Tam giác đều nội tiếp đường tròn nên ta có:
R = \(\frac{{a\sqrt 3 }}{3}\) (a là độ dài cạnh tam giác đều)
Suy ra a = \(\frac{{3R}}{{\sqrt 3 }} = R\sqrt 3 \)
Hình vuông nội tiếp đường tròn nên ta có:
\(R = \frac{d}{2}\) (d là đường chéo của hình vuông)
Suy ra d = 2R. Gọi x là độ dài cạnh hình vuông hay \(\sqrt {{x^2} + {x^2}} = 2R\) suy ra \(x\sqrt 2 = 2R\)
Hay x = \(\frac{{2R}}{{\sqrt 2 }} = R\sqrt 2 \)
Trong lục giác đều có khoảng cách từ tâm đến các đỉnh là bằng nhau (= R); các góc ở tâm đều bằng 60o nên lục giác đều gồm 6 tam giác đều.
Suy ra độ dài cạnh của lục giác đều là R.
Đúng 0
Bình luận (0)