Cho điểm M nằm ngoài đường tròn (O; R). Vẽ tiếp tuyến MA ( A là tiếp điểm), cát tuyến MBC ( B nằm giữa M và C) và O nằm trong góc AMC. Vẽ OK vuông góc BC tại K . a) CM : tứ giác MAOK nội tiếp đường tròn. Xác định tâm và bán kính đường tròn này.
b) vẽ dây cung AI // BC . CM góc IAK + góc AMO = 90 độ.
c) IK cắt (o) tại điểm thứ hai là D. CM MD là tiếp tuyến (o).
Helppp meeeeeee
Cho điểm M nằm ngoài đường trong (O; R) sao cho OM = 2R. Qua M vẽ hai tiếp tuyến MA, MB với đường tròn (O; R) (A, B là các tiếp điểm) và kẻ cát tuyến MCD của đường tròn (O; R) cắt đoạn thẳng OA (C nằm giữa M và D). Gọi I là trung điểm của dây cung CD và H là giao điểm của AB với OM.
a) Góc MAB có phải là góc tạo bởi tia tiếp tuyến và dây cung của (O) ? vì sao?
b) Tính góc MOA và số đo cung AB
c) Chứng minh: MC.MD=MH.MO
d) Chứng minh HA là phân giác của góc DHC
e) Khi cát tuyến MCD thay đổi thì trọng tâm tam giác ACD chạy trên đường nào?
Giải giúp mình câu e với, mình cảm ơn.
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB và cát tuyến MCD với đường tròn (O), trong đó điểm C ở giữa hai điểm M, D. Đường thẳng qua điểm C và vuông góc với OA cắt AB tại H. Gọi I là trung điểm của dây CD.
Chứng minh : HI // AD
Từ điểm A ở bên ngoài đường tròn (O), kẻ các tiếp tuyến AM, AN với đường tròn (M,N là tiếp điểm). Đường thẳng d đi qua A cắt đường tròn (O) tại 2 điểm phân biệt B,C ( O ko thuộc (d), B nằm giữa A và C ). Gọi H là trung điểm BC
a, CM các điểm O,H,M,A,N cùng thuộc 1 đường tròn
b, CM: AM.AN = AB.AC và HA là tia phân giác của góc MHN
c, Lấy E trên MN sao cho BE // AM. CM HE // CM
cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn.Từ điểm M thuộc đường tròn d kẻ 2 tiếp tuyến MA,MB tới đường tròn.Hạ OH vuông góc với đường thẳng d tại H.Nối AB cắt OH tại K,cắt OM tại I.Tia OM cắt đường tròn (O;R) tại E
Cho đường tròn (O;R) từ M nằm ngoài đường tròn (O;R) vẽ tiếp tuyến MA (A là tiếp điểm) . Vẽ AH vuông góc với OM
a) Tính OH.OM theo R
b) Vẽ đường kính AB, BM cắt đường tròn (O;R) tại C. Vẽ OI vuông góc với BC tại I. CMR: OI//AC
c) CM: MH.MO= MB.MC
d) Biết OH cắt OI và BC tại N và K. CMR: HK+HN> 2.AH
Từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AM và AN đến đường tròn (M và N là tiếp điểm). Đường thẳng MO cắt đường tròn tại điểm P. Đường thẳng vuông góc với OA tại O cắt AN tại C và cắt AM tại B.
1) Chứng minh bốn điểm A, M, O, N cùng thuộc một đường tròn.
2) Chứng minh CP là tiếp tuyến tại P với đường tròn. Suy ra MB= CN .
P/S: Vẽ cho mình hình với ạ vì chủ yếu mình cần hình,phần a ko cần đâu chỉ cần làm phần b thôi ạ
Cho đường tròn tâm (O). Từ điểm S ở ngoài đường tròn (O) kẻ các tiếp tuyến SA và SB với (O) (A, B là các tiếp điểm). Kẻ cát tuyến SCD không đi qua tâm O (C nằm giữa S và D). Gọi I là trung điểm của CD.a/ Chứng minh các điểm S, A, I, O, B cùng nằm trên một đường tròn.b/ Chứng minh IS là đường phân giác của góc AIB.c/ Gọi M là giao điểm của hai đường thẳng SO và AB; N là giao điểm của hai đường thẳng SD và AB. Chứng minh MC.ND = NC.MD