Chương II - Hàm số bậc nhất

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Quynh

Cho đường thẳng y = mx + m - 1 (d).
a. chứng minh rằng (d) luôn đi qua,1 điểm cố định.
b. tìm m để (d) tạo với Ox,Oy một tam giác với S = 2

Nguyễn Hoàng Minh
2 tháng 11 2021 lúc 7:07

a, Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà (d) luôn đi qua

\(\Leftrightarrow y_0=mx_0+m-1\\ \Leftrightarrow m\left(x_0+1\right)-\left(y_0+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\y_0+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-1\end{matrix}\right.\\ \Leftrightarrow A\left(-1;-1\right)\)

Vậy \(A\left(-1;-1\right)\) là điểm cố định mà (d) luôn đi qua

b, PT giao điểm của (d) và Ox là \(y=0\Leftrightarrow mx=1-m\Leftrightarrow x=\dfrac{1-m}{m}\)

\(\Leftrightarrow B\left(\dfrac{1-m}{m};0\right)\Leftrightarrow OB=\left|\dfrac{1-m}{m}\right|\)

PT giao điểm của (d) và Oy là \(x=0\Leftrightarrow y=m-1\Leftrightarrow C\left(0;m-1\right)\Leftrightarrow OC=\left|m-1\right|\)

Ta có tam giác tạo thành từ (d) với Ox,Oy là OCD

Và \(S_{OCD}=2\Leftrightarrow\dfrac{1}{2}OB\cdot OC=2\Leftrightarrow\left|\dfrac{1-m}{m}\left(m-1\right)\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\left(m-1\right)^2}{-m}=2\\\dfrac{\left(m-1\right)^2}{-m}=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(m-1\right)^2=-2m\\\left(m-1\right)^2=2m\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m^2+1=0\left(vô.lí\right)\\m^2-4m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)

Vậy \(m=2\pm\sqrt{3}\) thỏa mãn đề bài


Các câu hỏi tương tự
Anh Quynh
Xem chi tiết
hưng đỗ
Xem chi tiết
Chan
Xem chi tiết
Chan
Xem chi tiết
Thanh Trà
Xem chi tiết
Nguyễn TQ
Xem chi tiết
Tiến Quân
Xem chi tiết
Nguyễn Haanh
Xem chi tiết
Herimone
Xem chi tiết