Bài 12. Cho hai đoạn thẳng AB, CD vuông góc với nhau và cắt nhau tại trung điểm của mỗi đoạn. Chứng minh rằng các đoạn thẳng AC, CB, BD, DA bằng nhau
Cho hai đoạn thẳng AB và CD vuông góc với nhau tại trung điểm của mỗi đoạn. Kẻ các đoạn thẳng AC, CB, BD, DA. Tìm các tia phân giác của các góc (khác góc bẹt) trên hình ?
Cho đoạn AB, trên hai nửa mặt phẳng đối nhau bờ AB vẽ các đoạn thẳng AC, BD sao cho AC = BD và AC vuông góc với AB, BD vuông góc với AB. Gọi M là trung điểm của AB. CMR : C, M, D thẳng hằng
Vẽ hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh:
a) OM = ON
b) Ba điểm M, O, N thẳng hàng.
cho 2 đoạn thẳng AB , CD ⊥ với nhau và cắt nhau tại O là trung điểm của mỗi đoạn , chứng minh AC = BC = BD = DA
Cho tam giác ABC. Trên cạnh AB kéo dài lấy D sao cho BD = AB và kéo dài AC một đoạn. CE = AC, kéo dài một đoạn lấy M sao cho CM = CD, kéo dài EB một đoạn rồi lấy N sao cho BN = BE. Chứng minh rằng
a) Ba điểm M, A, N thẳng hàng
b)A là trung điểm của MN
Cho đoạn thẳng AB, điểm M nằm trên đường trung trực của AB.
a)So sánh đọ dài các đoạn thẳng MA và MB.
b)Lấy N thuộc đường thẳng d, chứng minh tam giác MAN bằng tam giác MBN và NM là tia phân giác của góc ANB.
Hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của mỗi đoạn thẳng.
Chứng minh rằng AC // BD ?
Cho tam giác ABC; M và N lần lượt là trung điểm của hai cạnh AB và AC. Lấy điểm P sao cho N là trung điểm của đoạn thẳng MP.chứng minh rằng a, CP// AB, CP =AB/2