Cho hàm số \(y=x^3-3x^2+4\left(C\right)\). Tìm tọa độ điểm M thuộc (C) sao cho tiếp tuyến của đồ thị tại điểm đó song song với đường thẳng \(y=9x+3\)
Cho hàm số \(y=x^3-3x^2+2\). Tìm 2 điểm A, B thuộc đồ thị (C) cho tiếp tuyến của (C) tại A và B song song với nhau đồng thời độ đoạn thẳng A bằng \(4\sqrt{2}\)
Cho hàm số \(y=x^3-3x^2+2\left(1\right)\)
Gọi M là điểm thuộc đồ thị (C) có hoành độ bằng -1. Tìm m để tiếp tuyến với (C) tại M song song với đường thẳng d : \(y=\left(m^2+5\right)x+3m+1\)
Cho hàm số \(y=\frac{2x}{x-1}\) có đồ thị (C). Tìm 2 điểm A, B thuộc đồ thị sao cho tiếp tuyến của đồ thị (C) tại các điểm đó song song với nhau đồng thời 3 điểm O, A, B tạo thành tam giác vuông tại O (O là gốc tọa độ)
Cho hàm số \(y=x^3-3x^2+2\) có đồ thị (C).
Gọi M, N là hai điểm phân biệt trên (C) sao cho 2 tiếp tuyến tại M, N song song với nhau và đường thẳng MN cắt trục hoành, trục tung lần lượt tại A, B khác O sao cho \(AB=\sqrt{10}\).
Viết phương trình hai tiếp tuyến đó.
Cho hàm số : \(y=\frac{x^2-x+1}{x-1}\) có đồ thị (C)
a. Viết phương trình tiếp tuyến của (C), biết tiếp tuyến song song với đường thẳng \(\Delta:3x-4y+1=0\)
b. Biện luận theo \(m\ne0\) số tiếp tuyến của (C) mà tiếp tuyến vuông góc với đường thẳng \(\Delta_m:x-my+m+1=0\)
Tìm m để tiếp tuyến của đồ thị hàm số \(y=\frac{1}{3}x^3-\frac{m}{2}x^2+\frac{1}{3}\) tại điểm có hoành độ bằng -1 song song với đường thẳng \(5x-y=0\)
Cho hàm số : \(y=x^3-2x^2+\left(m-1\right)x+2m\left(C_m\right)\)
a. Tìm m để tiếp tuyến của đồ thị \(\left(C_m\right)\) tại điểm có hoành độ x = 1 song song với đường thẳng \(y=3x+10\)
b. Tìm m để tiếp tuyến có hệ số góc nhỏ nhất của đồ thị \(\left(C_m\right)\) vuông góc với đường thẳng \(\Delta:y=2x+1\)
y=(2x+1)/(x-2) có đồ thị H . C/m H có vô số cặp tiếp tuyến song song, đồng thời các đường thẳng nốitieeps điểm của các cặp tiếp tuyến này luôn đi qua một điểm cố định