Từ một điểm A ở bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến ACD với đường tròn (B là tiếp điểm, C nằm giữa A và D). Tia phân giác của góc CBD cắt đường tròn tại m, cắt CD tại E và cắt tia phân giác của góc BAC tại H. Chứng minh rằng:
a) AH ⊥ BE
b) MD2=MB.ME
Các bạn giúp mik vs ạ
cho (O), lấy M nằm ngoài đường tròn. Từ M kẻ 2 tiếp tuyến MA và MB của (O). A,B là tiếp điểm. Biết cát tuyến MCD cắt (O) tại C và D (MC < MD); Góc AOC=70 độ; Góc DCB=30 độ. Tính góc AMD=?
từ điểm M ở ngoài đường tròn(O) , VẼ 2 tiếp tuyến MA, MB và một cát tuyến MCD. gọi I là giao điểm của AB , CD . CHỨNG MINH RẰNG IC/ID=MC/MD
Từ một điểm A bên ngoài (O), vẽ tiếp tuyến AB và cát tuyến ACD. Tia phân giác của góc B A C ^ cắt BC và BD lần lượt tại M và N. Vẽ dây BF vuông góc với MN, cắt MN tại H, cắt CD tại E. Chứng minh:
a, Tam giác BMN cân
b, F D 2 = F E . F B
cho o r từ s nằm ngoài đường tròn tâm o kẻ các tiếp tuyến sa và sa' cát tuyến sbc với (o) phân giác góc bac cắt bc tại d cắt (o) tại e gọi h là giao điểm của os và aa' g,f là giao điểm oe và aa' với bc chứng minh sa=sd,sa2=sf.sg
Qua điểm M nằm bên ngoài đường tròn (O), vẽ tiếp tuyến AB và cát tuyến MAB của đường tròn . Tia phân giác của góc ACB cắt dây AB tại I. Chứng minh MC=MI
Từ điểm M nằm ngoài đường tròn (O) . Kẻ tiếp tuyến MC tại C và cát tuyến MAB ( A nằm giữa M và B ) . Gọi D là điểm chính giữa cung AB không chứa C ; CD cắt AB tại I . Chứng minh
a) Góc MCD bằng góc BID
b) MI = MC
a, Cho (O) , 2 đường kính AB, CD vuông góc với nhau , M là điểm nằm trên cung AC , tiếp tuyến tại M cắt CD tại E. CM: góc MED = 2.góc(MBA).
b, Cho điểm A nằm ngoài (O, R);vẽ cáp tuyến ABC và ADếnsến (O) , các điểm B, C, D, E thuộc (O) . CM : AB. AC=AD. AE=OA^2 - R^2.