Cho tam giác ABC (CA=CB), đường cao BD. Trên các cạnh BA,BC lấy tương ứng ở hai điểm E và F sao cho BE=BF=BD. Qua E kẻ đường thẳng song song với AC cắt BC ở N , cắt BC ở N, cắt BD ở K. Qua F kẻ đường thẳng song song với AC cắt AB ở M, cắt BD ở I. Tính độ dài các cạnh AB,BC nếu biết EM=9cm, FN=12cm và IK=6cm.
Cho tam giác ABC, một đường thẳng song song với BC cắt AB,AC lần lượt tại D,E và cắt đường thẳng kẻ từ C song song với AB tại F. Gọi giao điểm AC và BF là S
a, CMinh: AB.CE=AC.CF
b,CMinh:SC2=SA.SE
Cho tam giác ABC. Điểm M thuộc cạnh BC sao cho \(\dfrac{BM}{MC}=\dfrac{1}{2}\) . Qua M kẻ đường thẳng song song với AC cắt AB ở D. Qua M kẻ đường thẳng song song với AB cắt AC tại E. Tìm các cặp tam giác đồng dạng.
Cho ΔA'B'C' và ΔABC có\(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}\)
Trên AB lấy M sao cho AM=A'B', đường thẳng đi qua M song song với BC cắt AC tại N. Chứng minh rằng:
a) ΔAMN=ΔA'B'C'
b) ΔA'B'C' đồng dạng với ΔABC
GIÚP MÌNH VỚI Ạ, MÌNH CẢM ƠN NHIỀU
Cho tam giác cân ABC (CA = CB), đường cao BD. Trên các cạnh BA, BC lấy tương ứng hai điểm E và F sao cho BE = BF = BD. Qua E kẻ đường thẳng song song với AC cắt BC ở N, cắt BD ở K. Qua F kẻ đường thẳng song song với AC cắt AB ở M, cắt BD ở I. Tính độ dài các cạnh AB, BC nếu biết EM = 9cm, FN = 12cm và IK = 6cm.
Cho tam giác ABC, qua điểm M trên cạnh AB vẽ đường thẳng song song BC cắt AC tại N
a) Giả sử AB= 6cm, CN= 3cm, AC= 9cm.Tính BM
b) Qua B kẻ tia Bx song song với AC cắt đường thẳng MN tại D, gọi E là giao điểm của AB và CD. CM: ΔMED∼ΔBEC, EB2 =EA.EM
c) Qua E kẻ đường thẳng song song với BD cắt AD tại F. CM: \(\frac{1}{EF}\)=\(\frac{1}{AC}\)+\(\frac{1}{CN}\)
cho tam giác abc kẻ đường thẳng song sonng bc cắt ab ở d và cắt ac ở e qua c kẻ cx song song ab cắt de ở g goi h là giao điểm ac , bg kẻ hi song song ab ( i thuộc bc ) chứng minh rằng :
a) AD.EG=BD.DE
B) HC^2=HE.HA
C) 1/HI=1/AB+1/CG