Cho (O ;R). Từ một điểm A bên ngoài đường tròn kẻ hai tiếp tuyến AB, AC (B, C là tiếp điểm). I là một điểm thuộc đoạn BC ( IB < IC ). Qua I kẻ đường thẳng d vuông góc với OI cắt AB và AC thứ tự tại E và F
1. Chứng minh các tứ giác OIBE và OIFC nội tiếp được
2. Chứng minh I là trung điểm của EF
3. Gọi K là điểm thuộc cung nhỏ BC. Tiếp tuyến tại K của (O) cắt AB và AC tại M và N, tính chu vi tam giác AMN theo R nếu OA = 2R
4. Qua O kẻ đường thẳng vuông góc với AO cắt AB, AC thứ tự tại P và Q. Tìm vị trí của A để diện tích tam giác APQ nhỏ nhất
Cho đường tròn (O,R) và điểm A ở ngoài đường tròn. Qua A kẻ 2 tiếp tuyến AB, AC tới đường tròn (B và C là 2 tiếp điểm). I là 1 điểm thuộc đoạn BC (IB<IC). Kẻ đường thẳng d vuông góc với OI tại I. Đường thẳng d cắt AB, AC lần lượt tại E và F.
a) Chứng minh: OIBE và OIFC là các tứ giác nội tiếp
b) Chứng minh: IE = IF
K là một điểm trên cung nhỏ BC. Tiếp tuyến của đường tròn (O) tại K cắt AB, AC tại M và N.
d) Qua O kẻ đường thẳng vuông góc với OA cắt AB, AC tại P và Q. Tìm vị trí của A để diện tích tam giác APQ nhỏ nhất(giải câu này)
tks,
Bài 1: Cho ∆ABC có 3 góc nhọn nội tiếp (O;R) các đường cao BE,CF cắt nhau tại H .
a/ Chứng minh: AH vuông góc BC .
b/ AH cắt BC tại D. Kẻ đường kính AK của (O). Chứng mimh: AB.AC = 2R. AD
c/ AK cắt BC tại M. Chứng minh: MB. MC = MA. MK
d/ Gọi I là trung điểm BC. Chứng minh: H, I, K thẳng hàng
Bài 2: Cho A nằm ngoài (O;R) kẻ 2 tiếp tuyến AB, AC và cát tuyến AMN sao cho O nằm ngoài góc BÂN. Lấy I là trung điểm của MN.
a/ Chứng minh: 5 điểm A,B,I,O,C cùng thuộc 1 đường tròn.
b/ Chứng minh AB2 = AM. AN .
Bài 3: Cho ∆ABC có 3 góc nhọn nội tiếp (O), Phận giác AD của ∆ABC cắt BC tại I và cắt cung nhỏ BC tại M.
a/ Chứng minh: IA.IM = IB.IC và MC2 = MI.MA
b/ Tiếp tuyến tại A của (O) cắt BC tại E. Chứng minh: EA2 = EB . EC.
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao AD,
BE, CF cắt nhau tại H.
a) Chứng minh tứ giác AEHF nội tiếp. b) Chứng minh BH . EC = BC. DH
c) Gọi M là trung điểm của BC. Tiếp tuyến của đường tròn tại B cắt OM tại P.
Chứng minh rằng DAP MAO =
Cho nửa (O;AB). Các điểm CD cùng thuộc đường tròn; C \(\in\) cung AB. Gọi H là giao điểm của AD và BC; E là giao điểm của AC và BD.
a) CHứng minh EH ⊥ AB và tứ giác ACHD nội tiếp đường tròn
b) Vẽ tiếp tuyến tại D của (O) cắt EH tại I. Chứng minh I là trung điểm của EH
c) Chứng minh IC là tiếp tuyến của (O)
cho △ ABC nhọn, nội tiếp đường tròn tâm O, sao cho cung AB = cung BC. vẽ đường cao AE và CF cắt nhau tại H.Vẽ tiếp tuyến Bn tại B của đường tròn tâm O
a, chứng minh AEHF nội tiếp
b, chứng minh tiếp tuyến Bn // AC
Giup mik với
Bài 6: Cho điểm A nằm ngoài đuông tròn (O; R). Kẻ hai tiếp tuyến AB, AC (B, C là các tiếp điểm) Qua B kẻ dây BE song song với AC. Cát tuyến AE cắt đuờng tròn (0) tai D (D nằm giữa A, E). Gọi F là trung điểm của
DE . a) Chứng minh rằng: năm điểm A, B, F, O, C cùng thuộc một đuờng tròn.
b) Tia BD cắt AC tại I. Chứng minh rằng: IC²= ID. IB và I là trung điểm của CA.
c) Tia BF cắt đường tròn (O) tại K (K # B). Gọi T là giao điểm của OA với (O) (T nằm giữa O và A), KT cắt BC tại H. Chứng minh rằng: TC là tiếp tuyến đường tròn ngoại tiếp tam giác CHK.
Từ điểm A ở ngoài đường tròn (O;R) kẻ 2 tiếp tuyến AB, AC đến (O) (B, C là 2 tiếp điểm).
a) Chứng minh : ABOC nội tiếp.
b) Qua A, kẻ một cát tuyến bất kì cắt (O) tại E và F (E, F không qua O và E nằm giữa A, F). Chứng minh: AB2 = AE. AF.
c) Gọi H là giao điểm của AO và BC. Chứng minh OHEF nội tiếp.
Cho tam giác ABC ngoại tiếp (O) có AB=c, BC=a,AC =b. Gọi D,E,F là tiếp điểm AB, BC, AC với (O). ED và EF cắt đường thẳng qua A //BC tại G, H.
1, Tính DG/DE theo a,b,c
2,Chứng minh GH,HD,EO đồng quy
3, Gọi EO cắt GH tại Q. Chứng minh tâm đường tròn nội tiếp tam giác DFQ thuộc (O)