Cho ΔABC có 3 góc nhọn nội tiếp (O ;R) các đường cao AD,BE cắt nhau tại H , kéo dài BE cắt (O) tại F
a, cm : tg CDHE nội tiếp
b, Gọi M là trung điểm của AB
cm : ME là tiếp tuyến của đường tròn ngoại tiếp ΔCDE
c, Cho BC cố định và BC = R \(\sqrt{3}\)
Xác định vị trí của A trên (O) để DH.DA đạt GTLN
Mn giúp mình từ ý 2 câu b nhé
Cho tam giác ABC có 3 góc nhọn, nội tiếp (O) , các đường cao AD, BE, CF , , cắt nhau tại điểm H . Gọi M là trung điểm của BC , N là điểm đối xứng với D qua M . Đường thẳng NH cắt đường thẳng qua A song song với BC tại P . Gọi I là điểm đối xứng với O qua BC .
a. Chứng minh: BFEC là tứ giác nội tiếp.
b. Chứng minh: tam giác APH đồng dạng tam giác HDN và IH= IB= IC
c, Đường tròn ngoại tiếp tam giác BHC cắt đường tròn ngoại tiếp tam giác AHP tại điểm thứ 2 là G khác H . Chứng minh: góc GHM = 90 độ
GIÚP MÌNH GẤP Ạ MÌNH CẢM ƠN NHIỀU
1: Cho tam giác ABC nhọn nội tiếp (O) (AB<AC) có 3 đường cao AD, BE, CM cắt nhau tại H, AD cắt (O) tại N
a) chứng minh tứ giác BMHD, BMEC nội tiếp
b) chứng minh MC là tia phân giác của góc EMD
c) chứng minh H và N đối xứng với nhau qua BC
d) chứng minh OC vuông góc BE
2: Cho tam giác abc nhọn nội tiếp (o) có 2 đường cao bm và cd cắt nhau tại h. bm và cd cắt (o) lần lượt tại f và e
a) chứng minh tứ giác bdmc, adhm nội tiếp
b) chứng minh ef//md
c) vẽ đường kính bk của (o). chứng minh ah=ck
d) gọi i là điểm đối xứng h qua bc. chứng minh i thuộc (o)
3: cho tam giác abc nhọn nội tiếp (o) (ab<ac) có 3 đường cao am, bn, cd cắt nhau tại h. am cắt (o) tại e
a) chứng minh tứ giác mnhc, bdnc nội tiếp
b) chứng minh h và e đối xứng với nhau qua bc
c) chứng minh oa vuông góc dn
d) gọi i và k lần lượt là hình chiếu của e lên ab và ac, chứng minh 3 điểm i, m, k thẳng hàng
Cho\(\Delta ABC\) nhọn nội tiếp (O) , hai đường cao BE và AD cắt nhau tại H
a) chứng minh 4 điểm C, H, D, E cùng thuộc 1 đường tròn
b) Ở ngoài \(\Delta ABC\) vẽ nửa đường tròn đường kính AC, đường thẳng BE cắt đường tròn đó tại F. CM : \(AF^2=AH.AD\)
cho tam giác ABC nhọn AB<AC nội tiếp đường tròn tâm O. BD và CE là đường cao cắt nhau tại H . K là giao điểm của CB và ED .
a) B,E,C,D thuộc đường tròn tâm M
b) cm KB.KC=KE.KD
Cho tam giác ABC, các đường cao AD,BE và CF. Gọi H là trực tâm
a) Chứng minh 4 điểm A,E,H,F cùng thuộc 1 đường tròn, Gọi I là tâm của đường tròn đó, hãy xác định I
b) Gọi O là trung điểm BC, chứng minh OE là tiếp tuyến của (I)
Cho tam giác ABC cân tại A nội tiếp (O). Các đường cao AG,BE,CF cắt nhau tại H
1.Cm bốn điểm A,E,H,F cùng thuộc một đường tròn. Xác định tâm I của đường tròn đó
2. Cm AF.AC=AH.AG
3.Cm GA là tia phân giác của góc EGF
4. Gọi K là điểm đối xứng của H qua BC. Cm K thuộc đường tròn tâm O
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O;R). Ba đường cao AD ; BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;E;F;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn này
b) Đường thẳng EF cắt đường thẳng BC tại K. Chứng minh KE.KF=KB.KC
c) Gọi M là giao điểm của AK và (O). Chứng minh góc KAC= góc KFM
d) Chứng minh M;H;I thẳng hàng