Bài 3: Cho tam giác ABC cân tại A. Tia phân giác của góc A cắt BC tại D. Từ D kẻ DE vuông góc với AB (E ϵ AB) và DF AC (F ϵ AC). Chứng minh rằng:
a) DE = DF.
b) △ BDE = △ CDF.
c) AD là đường trung trực của BC.
Bài 1 Cho tam giác ABC vuông ở A,có AB=6cm;AC=8cm,phân giác BD(D thuộc AC).Kẻ DE vông góc với BC(E thuộc BC).Gọi F là giao điểm của BA và ED.
a) Tính độ dài cạnh bC?b) Chứng Minh: tam giác BAD= tam giác BEDc) Chứng Minh tam giác DFC cân tại D
Cho tam giác ABC vuông góc tại A , kẻ BD là tia phân giác của góc ABC , ( D thuộc AC ). Trên cạnh BC lấy điểm E sao cho BE=BA.
a )chứng minh DE = AD
b.) trên tia đối của tia AB lấy điểm F sao cho AF = CE chứng minh BD vuông góc EFc ) chứng minh AE //FC
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE.
a) Chứng minh AD = AE.
b) Chứng minh tam giác KBC cân.
c) Chứng minh AK là tia phân giác của góc A.
Cho tam giác ABC có góc A=90 độ và AB=AC. Trên cạnh AB và AC lấy lần lượt các điểm D và E sao cho AD=AE. Qua A và D kẻ đường thẳng vuông góc với BE cắt BC lần lượt tại M và N. Tia ND cắt CA tại I
a, Chứng minh: IN song song với AM b, Cho góc ABE= 35 độ. Tính số đo góc MAC
c, Chứng minh: A là trung điểm của IC
d, Trên nửa mặt phẳng bờ BC không chứa điểm A vẽ tia Nx song song với AC. Trên tia Nx lấy điểm F sao cho NF=AC. Chứng minh các điểm A,M,F thẳng hàng
( Giúp mình với ạ, mình đang cần gấp.Cảm ơn trước!!)
Cho tam giác ABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại D. Chứng minh rằng AD là tia phân giác của góc A ?
Cho tam giác DEF có DE = 5cm; DF = 12cm ; EF = 13cm.
a) Chứng minh tam giác DEF vuông.
b) Tia phân giác của góc E cắt DF tại M. Từ M kẻ MH vuông góc với EF. Chứng minh
DEM = HEM
c) Chứng minh tam giác MDH cân.
cho ∆ ABC vuông tại A, BD là tia phân giác của ^B(D ∈ AC). Từ D kẻ DE┴BC (E ∈ BC)
a) Giả sử AB=3cm, BC=5cm tính AC
b)CM: ∆ ABD=∆EBD
c)CM: ∆ADE cân
d)so sánh AD và AC