Bài1 : Cho A = {0;1;2;3;4;5;6;9} ; B = {0;2;4;6;8;9}, C= {3;4;5;6;7}
a. Tìm 𝐴 ∩ 𝐵; 𝐴 \ 𝐵
b. So sánh hai tập : \(\text{𝐴∩}\text{(B\C)}\) và \(\left(\text{𝐴∩𝐵}\right)\text{\𝐶}\)
Bài 2 : Tìm tất cả các tập hợp X thỏa mãn : 𝑋 ⊂ 𝐴; 𝑋 ⊂ 𝐵 với 𝐴= \(\left\{1;2;3;4\right\}\); 𝐵= \(\left\{0;2;4;6;8\right\}\)
Bài 3 : Xác định các tập hợp : 𝐴 ∪ 𝐵; 𝐴 ∩ 𝐵; 𝐴 \ 𝐵; 𝐵 \ 𝐴 và biểu diễn chúng trên trục số ?
a. 𝐴= \([-4;4]\) ; B=\([1;7]\)
b. 𝐴= \((-\infty;-2]\) , B= \([3;+\infty)\)
Bài1 : Cho A = {0;1;2;3;4;5;6;9} ; B = {0;2;4;6;8;9}, C= {3;4;5;6;7}
a. Tìm 𝐴 ∩ 𝐵; 𝐴 \ 𝐵
b. So sánh hai tập : A∩(B\C)và (A∩B)\C
Bài 2 : Tìm tất cả các tập hợp X thỏa mãn : 𝑋 ⊂ 𝐴; 𝑋 ⊂ 𝐵 với 𝐴= {1;2;3;4}; 𝐵= {0;2;4;6;8}
Bài 3 : Xác định các tập hợp : 𝐴 ∪ 𝐵; 𝐴 ∩ 𝐵; 𝐴 \ 𝐵; 𝐵 \ 𝐴 và biểu diễn chúng trên trục số ?
a. 𝐴= [−4;4] ; B=[1;7]
b. 𝐴= (−∞;−2] , B= [3;+∞)
Cho số thực a < 0 và hai tập hợp A = (-∞; 9a), B = (\(\dfrac{4}{a}\); +∞). Tìm a để A\(\cap\)B ≠ ∅
A. \(\left[{}\begin{matrix}a\ge3\\a< -4\end{matrix}\right.\)
B. \(\left[{}\begin{matrix}a\ge\dfrac{5}{2}\\a< -\dfrac{1}{3}\end{matrix}\right.\)
C. \(\left[{}\begin{matrix}a< \dfrac{5}{2}\\a\ge-\dfrac{1}{3}\end{matrix}\right.\)
D. -\(\dfrac{1}{3}\)≤ a ≤ \(\dfrac{5}{2}\)
1.viết tập hợp các số tự nhiên lẻ bé thua 25 bằng 2 cách.
2.cho tập hợp A=0;1;2;3;...............2018
a, tính số phần tử của A
b, gọi S là tổng các phần tử của A .tính S
3. chứng minh rằng nếu A là tập hợp con của B và B là tập hợp con của D thì A là tập hợp con của D
4. hãy xác định tập hợp sau = cách chỉ ra tính chất đặc trưng của các phần tử của nó.
a, tập hợp M các số tự nhiên chia hết cho 5 và bé thua 30
b,tập hợp P các số : 1;4;9;16;25;36;49;64;81
Cho các tập hợp A= {x ∈ R\(|\)-3<x<3}; B= {x ∈ R\(|\)-1 ≤ x ≤ 5}; C = {x ∈ R\(|\)Ixl ≥ 2}. Xác định các tập hợp A\(\cap\)B\(\cap\)C
A. [2;3)
B. (2;3)
C. [-1;3)
D. R
Cho hai tập hợp A=(-4;3) và B = (m-7;m). Tìm m để B ⊂ A
A. M ≤ 3
B. M ≥ 3
C. M = 3
D. M > 3
cho hai tập hợp A= [ -3; 5 ) và B= (1;6 ] . Tìm A ∩ B , A ∪ B, A / B , B / A
bài 1: xét tính đúng sai (có giải thích) và lập mệnh đề phủ định của mệnh đề sau:
A:\(\exists n\in N,\)(n2+1)\(⋮\)2
bài 2 :cho 2 tập B= {\(x\in Q|\)(\(x+2x^{^{ }2}\))(\(x^2-3\))=0}
a) xác định các tập hợp A bằng cách liệt kê các phần tử
b) tìm các tập hợp X sao cho X\(\subset A\)
BÀI 3: cho các tập hợp sau: A=(-10;5], B=(\(-\infty\);3)\(\cup\)(7;20). tìm các tập hợp A\(\cup\)B, A\(\cap\)B, A\B
bài 4: cho các tập hợp sau: A=(2m-3;m+1] và B=(-3;6). tìm m để A\B\(\ne\varnothing\)
bài 5:xét tính đúng sai (có giải thích) và lập mệnh đề phủ định của mệnh đề sau:
A:"\(\exists x\in Q,x^2=2"\)
bài 6: cho 2 tập: A={\(x|x=2k+1,k\in Z,-2< x< 5\)}
a) xác định các tập hợp A bằng cách liệt kê các phần tử
b) tìm các tập hợp X sao cho X\(\subset A\)
1, Cho hai tập hợp: A=[2m-1;+∞) ; B=(-∞;m+3] . A giao B ≠ ∅ khi và chỉ khi
A.m≤4 B.m≥3 C.m≥-4 D.m≥4
2. Cho hai tập hợp: A=[m;m+2] ;B=[2m-1;2m+3] . A giao B ≠ ∅ khi và chỉ khi
A. -3<m<3 B.-3<m≤3 C.-3≤m<3 D.-3≤m≤3
( Các bạn giải ra cụ thể giúp mình vs)