Lời giải:
Ta có:
\(2x^2+xy+2y^2=\frac{3}{2}(x^2+y^2)+\frac{1}{2}(x^2+2xy+y^2)\)
\(=\frac{3}{2}(x^2+y^2)+\frac{1}{2}(x+y)^2\)
Theo BĐT Bunhiacopxky:
\((x^2+y^2)(1+1)\geq (x+y)^2\Rightarrow \frac{3}{2}(x^2+y^2)\geq \frac{3}{4}(x+y)^2\)
\(\Rightarrow 2x^2+xy+2y^2=\frac{3}{2}(x^2+y^2)+\frac{1}{2}(x+y)^2\geq \frac{5}{4}(x+y)^2\)
\(\Rightarrow \sqrt{2x^2+xy+2y^2}\geq \frac{\sqrt{5}}{2}(x+y)\)
Hoàn toàn tương tự:
\(\sqrt{2y^2+yz+2z^2}\geq \frac{\sqrt{5}}{2}(y+z)\)
\(\sqrt{2z^2+zx+2x^2}\geq \frac{\sqrt{5}}{2}(z+x)\)
Cộng theo vế các BĐT thu được:
\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\geq \sqrt{5}(x+y+z)=\sqrt{5}\)
Ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)