A=\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+....+\dfrac{1}{\sqrt{24}+\sqrt{25}}\)
=\(\dfrac{\sqrt{2}-1}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+...+\dfrac{\sqrt{25}-\sqrt{24}}{25-24}\)
=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{25}-\sqrt{24}\)
=\(\sqrt{25}-1\)=5-1=4