a/ Ta có:
P=\(\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\)
= \(\dfrac{a+\sqrt{a}+\sqrt{a}+1}{\sqrt{a}+1}.\dfrac{a-\sqrt{a}-\sqrt{a}+1}{\sqrt{a}-1}\)
= \(\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}.\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}\)
= \(\left(\sqrt{a}+1\right).\left(\sqrt{a}-1\right)=a-1\) (điều cần chứng minh)
Vậy P=a-1
b/ Ta có:
\(a=\sqrt{4+2\sqrt{3}}=\sqrt{3+2\sqrt{3}+1}\)= \(\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Thay \(a=\sqrt{3}+1\) vào P ta được:
P= \(\sqrt{3}+1-1=\sqrt{3}\)
Vậy khi \(a=\sqrt{4+2\sqrt{3}}\) thì P= \(\sqrt{3}\)