a) Với \(x>0,x\ne1\), ta có:
\(B=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(B=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
a: Sửa đề: \(B=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b: \(B-1=\dfrac{\sqrt{x}-1-\sqrt{x}}{\sqrt{x}}=\dfrac{-1}{\sqrt{x}}< 0\)
=>B<1
c: Để B nguyên thì \(\sqrt{x}-1⋮\sqrt{x}\)
=>\(\sqrt{x}=1\)
=>x=1(loại)