Lời giải:
1. \(A=\frac{x-3\sqrt{x}-x+9}{x-9}=\frac{9-3\sqrt{x}}{x-9}=\frac{3(3-\sqrt{x})}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{-3}{\sqrt{x}+3}\)
\(x=57-24\sqrt{3}=48+9-2\sqrt{48.9}=(\sqrt{48}-\sqrt{9})^2\)
\(\Rightarrow \sqrt{x}=\sqrt{48}-\sqrt{9}=4\sqrt{3}-3\)
\(\Rightarrow A=\frac{-3}{4\sqrt{3}}=\frac{-\sqrt{3}}{4}\)
2. \(B=\frac{(3-\sqrt{x})(3+\sqrt{x})}{(\sqrt{x}+3)(\sqrt{x}-2)}+\frac{3-\sqrt{x}}{2-\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}+3}=\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{3-\sqrt{x}}{2-\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
\(=-\frac{\sqrt{x}+2}{\sqrt{x}+3}\)
3.
\(P=A:B=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}+2)}{\sqrt{x}+3}=\frac{3}{\sqrt{x}+2}\)
$P$ nguyên $\Leftrightarrow 3\vdots \sqrt{x}+2$
Mà $\sqrt{x}+2\geq 2$ nên $\sqrt{x}+2=3$
$\Rightarrow x=1$