a, ĐKXĐ: \(\left\{{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)
\(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
\(A=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)
\(A=\sqrt{x^2-1}+1-\left|\sqrt{x^2-1}-1\right|\)
nếu \(\left\{{}\begin{matrix}x\le-\sqrt{2}\\x\ge\sqrt{2}\end{matrix}\right.\) thì \(A=\sqrt{x^2-1}+1-\sqrt{x^2-1}+1=2\) (1)
nếu \(-\sqrt{2}< x< \sqrt{2}\) thì \(A=2\sqrt{x^2-1}\)
vì \(x\ge\sqrt{2}\) thuộc khoảng (1) nên \(A=2\)