Cho biểu thức: \(P=\left(\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\right)\) Với x>0;x#1;x#4
a,Rút gọn P
b,Với giá trị nào của x thì P=\(\frac{1}{4}\)
c,Tính giá trị của P tại x=\(4+2\sqrt{3}\)
A= \(\left(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\left(x\ge0;x\ne1\right)\)
B=\(\frac{1}{\sqrt{x}+1}\)
Với M=A:B so sánh M2 và \(\sqrt{M}\)
\(\sqrt{9x-27}+\sqrt{x-3}-\frac{1}{2}\sqrt{4x-12}\)
\(\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)\left(\frac{x-\sqrt{x}}{\sqrt{x}+1}-\frac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)
1. Rút gọn biểu thức: A= \(\left(\sqrt{7-4\sqrt{3}}-\frac{\sqrt{15}-3}{\sqrt{3}}\right).\left(2+\sqrt{5}\right)\)
2. Cho biểu thức: M= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2}\)( với x \(\ge\)0, x\(\ne\)1)
a, Rút gọn biểu thức M
b, Tìm x để M=2
3.
a, Rút gọn biểu thức: \(\frac{4}{\sqrt{5}-\sqrt{3}}-\sqrt{20}-\sqrt{27}\)
b, Với a > 1, cho biểu thức P= \(\left(\frac{2}{\sqrt{a+1}}+\sqrt{a-1}\right):\left(\frac{2}{\sqrt{a^2-1}}+1\right)\)
Rút gọn biểu thức P, tìm giá trị của a để P = 2
1.Tính giá trị của biểu thức: A=\(\frac{\sqrt{x}+1}{\:\sqrt{x}-1}\) khi x=9
2.Cho \(P=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot \frac{\sqrt{x}+1}{\sqrt{x}-1}\) với x>0,x#1
a, Rút gọn P
b, Tính các giá trị của x để 2P=\(2\sqrt{x}+5\)
c,Với A,P là hai biểu thức ở trên,tìm x để \(\frac{A}{P}>2\)
A= \(\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
a) Rút gọn A
b) Tìm GTNN của A
Rút gọn:
a) \(\frac{a-b}{\sqrt{a}-\sqrt{b}}\)-\(\frac{\sqrt{a^3}-\sqrt{b^3}}{a-b}\)(\(a\ge0\),\(b\ge0\),\(a\ne b\))
b)\(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)\(\left(a>0,b>0,a\ne b\right)\)
C)\(\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)\(\left(a>0,a\ne1,a\ne4\right)\)
d)\(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\)\(\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2\)\(\left(a>0,b>0,a\ne b\right)\)
e)\(\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{9-x}\right)\):\(\left(\frac{3\sqrt{x}+1}{x-3\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\)\(\left(x>0,x\ne9\right)\)
bài 1, cho biểu thức: A=\(\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{2}{x-\sqrt{x}}\right):\frac{1}{\sqrt{x}-1}\)
a, Tìm điều kiện xác định, và rút gọn biểu thức A
b, Tính giá trị của A khi x=\(3-2\sqrt{2}\)
c, Tìm giá trị nhỏ nhất của A
bài 2, Cho biểu thức: A=\(\left(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right):\left(1-\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)
a, Rút gọn biểu thức, ta được A=1 b, cho \(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=6\)tìm MAX A
1, A=\(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{2}{\sqrt{x}+1}\right):\frac{x-1}{\sqrt{x}}\) với x > 0
a, Rút gọn
b, Tìm x nguyên nhỏ nhất để A < 0
c, Tìm \(x\in Z\) để \(A\in Z\)
2, Rút gọn: \(\left(\frac{14}{\sqrt{14}}+\frac{\sqrt{12}+\sqrt{30}}{\sqrt{5}+\sqrt{2}}\right).\sqrt{5-\sqrt{21}}\)
3, Cho \(\left|x\right|< 1,\left|y\right|< 1\). Chứng minh \(\frac{1}{1-x^2}+\frac{1}{1-y^2}\ge\frac{2}{1-xy}\)
Bạn nào giúp mk thứ 2 phải nộp rồi!!!