Cho biểu thức \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a) Tìm điều kiện xác định của \(A\)
b) Tính giá trị của biểu thức \(A\) khi \(x=0\)
c) Rút gọn biểu thức \(A\)
d) Tìm \(x\) để \(A=-\dfrac{8}{5}\)
e) Tìm \(x\) để \(A=\sqrt{x}-\dfrac{18}{5}\)
f) Tìm điều kiện của \(x\) để \(A< 0\)
g) Tìm điều kiện của \(x\) để \(A>0\)
h) Tìm tập hợp các số tự nhiên \(x\) để \(A>0\)
k) Chứng minh rằng \(A>-5\)
m) Tìm điều kiện của \(x\) để\(A>-3\)
n*) Tìm giá trị lớn nhất của biểu thức \(A\)
p*) Xét biểu thức \(M=A-\dfrac{27}{\sqrt{x}+3}\). Tìm giá trị nhỏ nhất của biểu thức \(M\)
q*) Tìm các số tự nhiên \(x\) để \(A\) là số nguyên
Cho biểu thức:
B= \(\dfrac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\dfrac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\)
a) Tìm điều kiện của x để B xác định
b) Rút gọn B
c) Tìm giá trị của x để B < 2
Tìm điều kiện xác định
\(A=\sqrt{x^2-5x+6}\)
\(B=\dfrac{x}{\sqrt{7x^2-8}}\)
\(C=\sqrt{-9x^2+6x-1}-\dfrac{1}{\sqrt{x^2+x+2}}\)
\(D=\sqrt{3-x^2}-\sqrt{\dfrac{2021}{3x+2}}\)
\(E=\sqrt{\dfrac{3x^2}{2x+1}-1}\)
\(F=\sqrt{25x^2-10x+1}+\dfrac{1}{1-5x}\)
Cho biểu thức:
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{x}{x-1}\right):\left(\dfrac{2x}{x-1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right)\)
a. Rút gọn A
b. Tìm x để A = 2
Tìm điều kiện xác định của các biểu thức: a) \(\sqrt{\dfrac{-10}{5-4x}}\) b)\(\sqrt{\dfrac{2x-5}{x+2}}\) c)\(\sqrt{2-x^2}\) d)\(\sqrt{1-\sqrt{x-1}}\) |
Cho biểu thức \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}};x\ge0,x\ne1\)
a) Rút gọn P.
b) Tính giá trị của P tại x thỏa mãn \(\left|2x-5\right|=3\)
c) Tìm các giá trị của x để P = 3.
d) Tìm các giá trị của x để \(P>\dfrac{1}{2}\).
e) Tìm các giá trị nguyên của x để P có giá trị nguyên.
Cho biều thức P=\(\dfrac{x-2\sqrt{x}}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}+\dfrac{1+2x-2\sqrt{x}}{x^2-\sqrt{x}}\)
a) Rút gọn biểu thức P
b) Tìm các giá trị x để P nhận giá trị nguyên
Tìm điều kiện xác định của biểu thức : B = \(\sqrt{x^2-3x}\) + \(\sqrt{\dfrac{x-5}{x-1}}\)- \(\sqrt[3]{2x-1}\)
Cho biểu thức \(A=\left(\dfrac{2x+\sqrt{x}}{x\sqrt{x}-1}-\dfrac{\sqrt{x}+1}{1+\sqrt{x}+x}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\) với \(x\ge0;x\ne1\)
a) Rút gọn A
b) Tìm \(x\) để \(A-2x\) đạt GTLN