a: \(A=\left(\dfrac{\sqrt{x}+4}{x-4}-\dfrac{1}{\sqrt{x}-2}\right):\left(1-\dfrac{2\sqrt{x}+5}{\sqrt{x}+2}\right)\)
\(=\dfrac{\sqrt{x}+4-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\dfrac{\sqrt{x}+2-2\sqrt{x}-5}{\sqrt{x}+2}\)
\(=\dfrac{2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}+2}{-\sqrt{x}-3}\)
\(=-\dfrac{2}{\sqrt{x}-2}\)
b: Để A là số nguyên thì \(\sqrt{x}-2\inƯ\left(-2\right)\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{1;16;0\right\}\)