Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lữ Bố

Cho \(a,b,c>0\). Chứng minh:

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\)\(a^2+b^2+c^2\)

Ma Sói
24 tháng 12 2017 lúc 16:15

Ta có

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge a^2+b^2+c^2\)

\(\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge a^2+b^2+c^2\)

Áp dụng bất đẳng thức Svacxo ta có

\(\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\) (1)

Chứng minh bất đẳng thức sau:

\(\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\left(a^2+b^2+c^2\right)\) (2)

Rút gọn 2 bên ta được

\(\left(a^2+b^2+c^2\right)\ge ab+bc+ca\)

\(2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ca\)

\(a^2-2ab+b^2+a^2-2ac+c^2+b^2-2bc+c^2\ge0\)

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) (luôn đúng)

Từ(1) và (2) suy ra đpcm