Cho tam giác ABC vuông ở A, AB < AC, trung tuyến AM. Gọi O là trung điểm của AM. Lấy D đối xứng với B qua O.
a) Chứng minh tứ giác ABMD là hình bình hành.
b) Chứng minh tứ giác AMCD là hình thoi.
c) Kẻ AH vuông góc với BC. Gọi K là giao điểm của DM với AC, N là trung điểm của AB. Chứng minh tứ giác NHMK là hình thang.
d) Chứng minh \(\widehat{NHK}\) = 90o
Cho tam giác ABC cân tại A , đường cao AH . Gọi O là trung điểm của Ah , BO cắt Ac tại N , CO cắt AB tại M . Chứng minh :
SAMON=\(\dfrac{1}{6}\)SABC
Cho tam giác MNP vuông tại M,đường cao AH,kẻ HD vuông góc MN(B thuộc MN),HE vuông góc MP (E thuộc MP)
a)Chứng mình MDHE là hình chữ nhật
b)Gọi A là trung điểm của HP.Chứng mình tam giác DEA vuông
c) tam giác MNP có thêm điều kiện gì để DE=2AE
Cho tam giác MNP vuông tại M,đường cao AH,kẻ HD vuông góc MN(B thuộc MN),HE vuông góc MP (E thuộc MP)
a)Chứng mình MDHE là hình chữ nhật
b)Gọi A là trung điểm của HP.Chứng mình tam giác DEA vuông
c) tam giác MNP có thêm điều kiện gì để DE=2AE
Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB; F thuộc AC).
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Vẽ điểm D đối xứng với A qua F. Chứng minh tứ giác DHEF là hình bình hành.
c) Tam giác ABC cần thêm điều kiện gì thì tứ giác AEHF là hình vuông?
Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. Từ H kẻ HE vuông góc với AB, HF vuông góc với AC (E thuộc AB; F thuộc AC).
a) Chứng minh tứ giác AEHF là hình chữ nhật.
b) Vẽ điểm D đối xứng với A qua F. Chứng minh tứ giác DHEF là hình bình hành.
Gọi M là trung điểm của BC. Từ M kẻ MP vuông gốc vs AI.MQ vuông góc vs AC. Lấy G đx vs M qua AB. K đx vs M qua AC . Chứng Minh AGBM, AMCK là hình thoi
Cho tam giác ABC, gọi M,N lần lượt là trung điểm của AB,AC.
a) Chứng minh tứ giác BMNC là hình thang. Tính SBMNC biết SABC= 80cm2, BC=20cm2.
b) Gọi I là trung điểm của AM; K là điểm đối xứng của M qua I. Chứng minh BMKN là hình bình hành.
c) Gọi G là giao điểm của BN và CM. Chứng minh AG, KN và BC đồng quy.
Cho tam giác ABC có O là giao điểm của ba đường phân giác, M là trung điểm của cạnh BC, đường cao AH cắt OM ở E, kẻ OD vuông góc với BC Chứng minh AE = OD