Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Đình Quân

Cho a,b,c là các số dương thỏa mãn abc=1. Chứng minh rằng

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\le\frac{3}{4}\)

Nguyễn Hoàng
19 tháng 2 2020 lúc 23:36

bđt trái dấu rồi nha!

\(P=\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}\ge\frac{3}{4}\)

+ Áp dụng bđt Cauchy ta có :

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\ge3\sqrt[3]{\frac{a^3}{\left(b+1\right)\left(c+1\right)}\cdot\frac{b+1}{8}\cdot\frac{c+1}{8}}=\frac{3}{4}a\). Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}2a=b+1\\b=c\end{matrix}\right.\)

+ Tương tự ta c/m đc : \(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{a+1}{8}+\frac{c+1}{8}\ge\frac{3}{4}b\). Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}2b=a+1\\a=c\end{matrix}\right.\)

\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{b+1}{8}\ge\frac{3}{4}c\). Dấu "=" \(\Leftrightarrow2c=a+1=b+1\)

Do đó : \(P\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(a+b+c\right)-\frac{3}{4}=\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\) \(\ge\frac{1}{2}\cdot3\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{4}\)

Dấu "=" \(\Leftrightarrow a=b=c=1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
bt ko
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
Lê Đình Quân
Xem chi tiết
Nguyễn Mai
Xem chi tiết
fghj
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Hoàng Quốc Tuấn
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết