Cho tam giác ABC cân tại A có đường cao AH . Gọi D là trung điểm của AC , K là điểm đối xứng với H qua D . Kẻ DE//BC (E thuộc AB)
a) CHứng minh rằng tứ giác EDCB là hình thang cân
b)CHứng minh tứ giác AKCH là hình chữ nhật
c) Gọi F là giao điểm của AH và ED. CHứng minh rằng F là trung điểm của BK
Cho tam giác ABC (AB < AC). Gọi M,N,P lần lượt là trung điểm của cạnh AB,AC,BC
a) Tứ giác BMNC là hình gì? Chứng minh
b) CM tứ giác AMPN là hình bình hành
c) kẻ AH cuông góc với BC( H ϵ BC). Gọi K là điểm đối xứng của H qua M. Chứng minh tứ giác AKBH là hình chữ nhật
Giúp mình nha :3
Cho ∆ABC có ba góc nhọn (AB < AC) đường cao AH và D, E, F lần lượt là trung điểm các cạnh AB, AC, BC, Gọi K là điểm đối xứng của H qua D.
a) Chứng minh AHBK là hình chữ nhật,
b) Tứ giác DEFH là hình gì? Vì sao?
c) Tìm thêm điều kiện của tam giác ABC để tứ giác AHBK là hình vuông
Cho tam giác ABC vuông tại A, AB = 5cm, BC = 13 cm. Gọi D là trung điểm của AC. Vẽ điểm E đối xứng với điểm B qua D.
a) Tính độ dài cạnh AC.
b) Chứng minh tứ giác ABCE là hình bình hành.
c) Gọi M là điểm đối xứng với B qua A. Tứ giác AMEC là hình gì ? Vì sao?
Cho tam giác ABC cân tại A. Gọi M là điểm đối xứng với A qua BC, H là giao điểm của AM và BC.
a) CM: tứ giác ABMC là hình thoi.
b) Gọi K là trung điểm của AC. Lấy điểm I đối xứng với H qua K. Chứng minh tứ giác AICH là hình chữ nhật.
c) Gọi D là trung điểm của AB. Chứng minh: 3 đường thẳng AH, BI, DK đồng qui.
Cho hình bình hành ABCD có AD = 2AB, góc A = 600. Gọi E, F lần lượt là trung điểm của BC và AD
a) Chứng minh AE⊥BF
b) Chứng minh tứ giác BFDC là hình thang cân
c) Lấy điểm M đối xứng với A qua B. Chứng minh tứ giác BMCD là hình chữ nhật. Từ đó suy ra 3 điểm M,E,D thẳng hàng
Giải chi tiết hộ mk ạ, cần gấp lắm
GIẢI GIÚP MMIK CÂU A), B) VÀ VẼ HÌNH NHA
cho tam giác ABC vuoong tại A. gọi E,F lần lượt là trung điểm của các cạnh AB và BC gọi p là điểm đối xứng của E qua F
a) chứng minh tứ giác ABPC là hình bình hành.
b) tứ giác AEPC là hình gì. vì sao
Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Bài 14: Cho △ABC có ba góc nhọn AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
b) Chứng minh: BK ⊥ AB và CK ⊥ AC.
c) Gọi I là điểm đối xứng của H qua BC. CMR: Tứ giác BIKC là hình thang cân.
d) BK cắt HI tại G, Tam giác ABC có thêm điều kiện gì để tứ giác GHCK là hình thang cân.