ta có :
1/2 < 2/3
2/3 <3/4
.........
9999/10000 < 10000/10001
suy ra : A2 < 1/2*2/3*3/4******9999/10000*10000/10001
suy ra : A2 < 1/10001 < 1/10000= (1/100)2
suy ra A2 < (1/100)2 . Từ đó: A < 1/100 = 0,01
ta có :
1/2 < 2/3
2/3 <3/4
.........
9999/10000 < 10000/10001
suy ra : A2 < 1/2*2/3*3/4******9999/10000*10000/10001
suy ra : A2 < 1/10001 < 1/10000= (1/100)2
suy ra A2 < (1/100)2 . Từ đó: A < 1/100 = 0,01
bài 17: Cho A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}..........\frac{9999}{10000}.\)Hãy so sánh A với 0,01
Chứng minh rằng:
a=1+1/2^2+1/3^2+1/4^2+...+1/100^2<2
b=1+1/2+1/3+1/4+...+1/63<6
c=1/2.3/4.5/6....9999/10000<1/100
A=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\)
Tính tổng sau: A=1.2+2.3+3.4+4.5+5.6+.....+99.100
tính tổng 100 số hạng đầu tiên của các dãy sau:
a)\(\frac{1}{1.2},\frac{1}{2.3},\frac{1}{3.4},\frac{1}{4.5},...\)
b)\(\frac{1}{6},\frac{1}{66},\frac{1}{176},\frac{1}{336},...\)
1/2.3+1/2.4+1/4.5+................+1/99.100
1,Cho A=2+22+24+26+...+260
Chứng minh : A chia hết cho 21 và 15
2,Tính tổng :
a,5+53+55+57+...+5101
b,1+4+42+43+44+...+4100
c,1.2+2.3+3.4+4.5+...+99.100
tính giá trị của biểu thức
a) A=\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) + ...+\(\frac{1}{99.100}\)
b) B= \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\) + \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\) +...+\(\frac{2}{97.99}\)
Cho A=1/2*3/4*5/6*..*9999/10000
Cmr A<1/100
A>1/142