Chương III : Phân số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn tú uyên

Cho A = \(\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+\dfrac{1}{1+3+5+7}+...+\dfrac{1}{1+3+5+...+2017}\)

Chứng tỏ: A < \(\dfrac{3}{4}\)

Phan Công Bằng
27 tháng 5 2017 lúc 8:37

Có \(A=\dfrac{1}{1+3}+\dfrac{1}{1+3+5}+...+\dfrac{1}{1+3+5+...+2017}\)

\(\Rightarrow A=\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{1+3+...+2017}\)

\(\Rightarrow A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2017^2}\)

Ta thấy:

\(\dfrac{1}{2^2}=\dfrac{1}{4}\)

\(\dfrac{1}{3^2}< \dfrac{1}{3.2}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

.................

\(\dfrac{1}{2017^2}< \dfrac{1}{2016.2017}\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2016.2017}\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2016}-\dfrac{1}{2017}\)

\(\Rightarrow A< \dfrac{1}{4}+\dfrac{1}{2}-\dfrac{1}{2017}\)

\(\Rightarrow A< \dfrac{3}{4}-\dfrac{1}{2017}\)

\(\Rightarrow A< \dfrac{3}{4}\)

Vậy \(A< \dfrac{3}{4}\).

Mai Tùng Dương
27 tháng 5 2017 lúc 9:28

\(\dfrac{1}{1+3}\) + \(\dfrac{1}{1+3+5}\) +...+ \(\dfrac{1}{1+3+...+2017}\)

= \(\dfrac{1}{2^2 }\)+\(\dfrac{1}{3^2}\) + ... +\(\dfrac{1}{2017^2}\)

Lại có :

\(\dfrac{1}{2^2}\) = \(\dfrac{1}{4} \)

\(\dfrac{1}{3^2}\) <\(\dfrac{1}{2.3}\)

...

\(\dfrac{1}{2017^2}\) <\(\dfrac{1}{2016.2017}\)

\(\Rightarrow \) A< \(\dfrac{1}{4} \) +\(\dfrac{1}{2.3}\)+... +\(\dfrac{1}{2016.2017}\)

A<\(\dfrac{1}{4} \)+\(\dfrac{1}{2}\)- \(\dfrac{1}{3}\) +...+\(\dfrac{1}{2016}- \dfrac{1}{2017}\)

A< \(\dfrac{1}{4} \)+\(\dfrac{1}{2}\) -\(\dfrac{1}{2017}\)

A<\(\dfrac{3}{4}\) -\(\dfrac{1}{2017}\)

\(\Rightarrow\)A<\(\dfrac{3}{4}\) (đpcm)

chúc bạn học tốt !!!ok


Các câu hỏi tương tự
Kookie Jeon
Xem chi tiết
Ngân Dung
Xem chi tiết
Hà An Trần
Xem chi tiết
Nguyễn Vũ Hoàng
Xem chi tiết
anh ngoc
Xem chi tiết
Lâm Đỗ
Xem chi tiết
Kim Taehyung (V)
Xem chi tiết
Vũ Thị Thanh Thủy
Xem chi tiết
kato Kite
Xem chi tiết