Cho 4 số nguyên dương a;b;c;d thỏa mãn điều kiện a + c = 2b và c(b + d) = bd . Chứng minh rằng : \(\left(\dfrac{a+c}{b+d}\right)^8=\dfrac{a^8+c^8}{b^8+d^8}\)
cho 3 số a,b,c khác 0 và a+b+c không bằng 0 thỏa mãn điều kiện a/b+c =b/a+c = c/a+b
tính giá trị biểu thức P=b+c/a + a+c/b + a+b/c
Bài 5. Tìm giá trị lớn nhất của các biểu thức sau:
a) C = - + b) D = - 3 -
Bài 6. Cho bốn số a, b, c, d thoả mãn điều kiện b 2 = ac; c 2 = bd. Chứng minh
cho 3 số thực a,b,c thỏa mãn a/2015=b/2016=c/2017
chứng minh rằng: 4(a-b)(b-c)=(c-a)2
Cho a,b,c là 3 số thực khác , thỏa mãn điều kiện: \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính giá trị biểu thực P=\(\left(1+\frac{b}{a}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{c}{b}\right)\)
Cho 4 số a; b; c; d \(\ne\) 0 thỏa mãn:
\(b^2=a.c\) ; \(c^2=b.d\) ; \(b^3+c^3+d^3\ne0\)
chứng minh rằng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\).
1) Chứng minh rằng \(\dfrac{1}{2!}+\dfrac{2}{3!}+\dfrac{3}{4!}+...+\dfrac{99}{100!}< 1\)
2) Cho a,b,c là ba số thực khác 0, thỏa mãn điều kiện
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}\)
Hãy tính gt biểu thức \(B=\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\)
3) Tìm 1 nghiệm của đa thức P(x) = \(x^3+ax^2+bx+c\)
Biết rằng đa thức có nghiệm và a + 2b + 4c = \(\dfrac{-1}{2}\)
1) Với điều kiện nào của a và b thì ta có tỉ lệ thức \(\frac{a}{b}=\frac{a+c}{b+c}\) với c \(\ne\) 0
2) Cho các số a,b,c,d \(\ne\) 0, thỏa mãn b2 = ac; c2 = bd; b3 + c3 +d3 \(\ne\) 0
Chứng minh: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
Bài 1: Cho tỉ lệ thức
Tính tỉ số
Bài 2: a, Tìm x,y,z biết:
b, Cho
Chứng minh rằng:
Bài 3: a, Cho
Chứng minh rằng:
b, Chứng minh rằng nếu thì