Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Tiến Dũng

Cho 3 số thực x,y,z Thỏa mãn x+y+z=0

Chứng minh xy+xz+yz\(\le\)0

Đức Huy ABC
15 tháng 5 2017 lúc 20:28

Từ x+y+z=0=>(x+y+z)2=0

<=>x2+y2+z2+2(xy+yz+zx)=0

<=>2(xy+yz+zx)= - (x2+y2+z2)\(\le\)0 với mọi x, y, z \(\in R\)

=>xy+yz+zx\(\le\)0.

Dấu bằng xảy ra khi và chỉ khi x=y=z=0.