Từ x+y+z=0=>(x+y+z)2=0
<=>x2+y2+z2+2(xy+yz+zx)=0
<=>2(xy+yz+zx)= - (x2+y2+z2)\(\le\)0 với mọi x, y, z \(\in R\)
=>xy+yz+zx\(\le\)0.
Dấu bằng xảy ra khi và chỉ khi x=y=z=0.
Từ x+y+z=0=>(x+y+z)2=0
<=>x2+y2+z2+2(xy+yz+zx)=0
<=>2(xy+yz+zx)= - (x2+y2+z2)\(\le\)0 với mọi x, y, z \(\in R\)
=>xy+yz+zx\(\le\)0.
Dấu bằng xảy ra khi và chỉ khi x=y=z=0.
Cho 3 số x;y;z khác 0 thỏa mãn xy+2013x+2013 khác 0 ; yz+y +2013 khác 0 ; xz+z+1 khác 0 và xyz=2013.
Chứng minh : \(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}=1\)
Cho x , y , z thõa mãn : \(x^2=yz;y^2=xz;z^2=xy\) CMR : x=y=z
Tìm các số hữ tỉ x,y,z thoả mãn:
a) x+y=-7/6 ; y+z=1/4 ; x+z=1/2
b) xy=1/3 ; yz=-2/5 ; xz=-3/10
cho 3 số x; y; z thỏa mãn
\(0\le x\le y\le z\le1\)
chứng minh
\(\dfrac{x}{y.z+1}+\dfrac{y}{x.z+1}+\dfrac{z}{x.y+1}\le2\)
Cho x,y,x \(\ne0\) và x2=yz, y2=xz, z2= xy. chứng minh x=y=z
4. Cho \(x^2+y^2+z^2=xy+xz+yz\). Chứng minh \(x=y=z\)
Cho x,y,z là các số khác 0 và \(x^2=yz\),\(y^2=xz\), \(z^2=xy\)
C/m rằng x=y=z
Biết xy/2x+3y=yz/5y+3z=xz/2z+5x với x,y,z khác 0 cmr x,y,z tỉ lệ với 2,3,5
Cho ba số dương x, y, z thỏa mãn: x + y + z = 1
Tìm giá trị nhỏ nhất của: \(P=\frac{x+y}{\sqrt{xy+z}}+\frac{y+z}{\sqrt{yz+x}}+\frac{z+x}{\sqrt{zx+y}}\)
Giúp