1) Cho M(-2;1) và đường thẳng( d): y=-2x+3. Viết phương trình đường thẳng (d') biết (d') //(d) và (d') đi qua M.
2) Cho (d): y= kx -4 (d'): y= 2x -1 Tìm k để (d) cắt (d') tại điểm M có hoành độ bằng 2.
3) Cho (d1): y= 3x (d2): y= x+ 2 (d3): y= (m- 3)x +2m +1 Tìm m để ba đường thẳng (d1),(d2), (d3) đồng quy.
Tìm m, để:
a) 3 đường thẳng:
y=-5(x+1) (d1)
y=mx+3 (d2) ( phân biệt và đồng quy)
y=3x+m (d3)
b) (d) (2m-8)x+(m+2)y+m+1=0 và (d'): (8+2m)x+(m-2)y+3m+1=0 vuông góc với nhau
nhanh hộ mình !
tìm m để 3 đt sau đồng quy :
(d1) y=x-m+1 (d2) y=2x (d3) y=2(2m-1)x+1/4
Cho ba đường thẳng d1: y = 2x + 8; d2: y = mx – 2m + 3; d3: y = x + 2.
1. Tìm m để d2 đi qua điểm E(1 ; 3).
2. Tìm m để d2 vuông góc với đường phân giác góc phần tư thứ hai.
3. Tìm m để ba đường thẳng trên đồng quy.
4. Tìm điểm cố định mà d2 luôn đi qua với mọi m. Từ đó tìm m để khoảng cách từ gốc O đến d2 là lớn
nhất.
5. Gọi d3 cắt 0x, 0y lần lượt tại A và B. Tìm A và B sau đó tính diện tích tam giác OAB theo hệ thức
lượng.
6. Lập phương trình đường thẳng d đi qua điểm M(3 ; 8) và song song với d3, cắt hai trục tọa độ tại C và
D. Tính độ dài đường cao của tam giác COD, từ đó suy ra khoảng cách từ điểm M đến d3.
7. Lập phương trình đường thẳng d’ qua M và vuông góc với d3. Tìm hình chiếu N của M trên d3, từ đó
tính khoảng cách từ M đến d3
a vẽ các ĐTHS y=x(d1) y=2x+2(d2) trên cùngmp
b gọi A là giao điểm của hai đồ thị tìm tọa độ A
c tìm m để y=(m+3)x-5 đi qua A
d tìm m để d2 cắt đường thẳng y=(2m-1)x+m tai 1 điểm trên trục tung
giúp mk vs
trên mặt phẳng tọa độ Oxy, cho 3 đường thẳng có phương trình:
(d1) : y=4x+4
(d2) : y=2x+2
(d3) : y=(3m+5)x+m-1 (m là tham số)
xác định m để 3 đường thẳng (d1),(d2),(d3) đồng quy
Cho 3 đường thẳng:
(d1):y=x+1
(d2):y=2
(d3):y=(2m+3)x-1
Tìm m để 3 đường thẳng đồng quy tại 1 điểm
Bài 1: Tìm m để a/ Hàm số y = (- m + 4) x + 5 là hàm số bậc nhất b/ Hàm số y = (2 - m) x - 3 đồng biến trong R Bài 2: Cho hàm số y = 2x có đồ thị (d1); hàm số y=x-1 có đồ thị (d2) . a / Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ. b/ Xác định tọa độ giao điểm A của (d1) và (d2) bằng phép toán. c/ Viết ph / trình đường thẳng (D) song song với (d2) và điểm M(6;3) qua