Có thể tạo được 6 vecto theo yêu cầu đó là: \(\overrightarrow {AB} ,\overrightarrow {BA} ,\overrightarrow {AC} ,\overrightarrow {CA} ,\overrightarrow {BC,} \overrightarrow {CB} \)
Có thể tạo được 6 vecto theo yêu cầu đó là: \(\overrightarrow {AB} ,\overrightarrow {BA} ,\overrightarrow {AC} ,\overrightarrow {CA} ,\overrightarrow {BC,} \overrightarrow {CB} \)
Bạn Việt chọn mật khẩu cho email của mình là một dãy gồm 8 kí tự đổi một khác nhau, trong đó có 3 kí tự đầu tiên là 3 chữ cái trong bảng gồm 26 chữ cái in thường và 5 kí tự tiếp theo là chữ số. Bạn Việt có bao nhiêu cách tạo ra mật khẩu?
Trong chương trình ngoại khoá giáo dục truyền thống, 60 học sinh được trường tổ chức cho đi xem phim. Các ghế ở rạp được sắp thành các hàng. Mỗi hàng có 20 ghế.
a) Có bao nhiêu cách sắp xếp 20 bạn để ngồi vào hàng đầu tiên?
b) Sau khi sắp xếp xong hàng đầu tiên, có bao nhiêu cách sắp xếp 20 bạn để ngồi vào hàng thứ hai?
c) Sau khi sắp xếp xong hai hàng đầu, có bao nhiêu cách sắp xếp 20 bạn để ngồi vào hàng thứ ba?
Một lớp được chia thành 5 nhóm A, B, C, D, E để tham gia hoạt động thực hành trải nghiệm Sau khi các nhóm thực hiện xong hoạt động, giáo viên chọn 3 nhóm trong xếp thứ tự trình bày kết quả hoạt động của 3 nhóm đã được chọn ra.
a) Có bao nhiêu cách chọn nhóm trình bày thứ nhất?
b) Sau khi đã chọn nhóm trình bày thứ nhất, có bao nhiêu cách chọn nhóm trình bày thứ hai?
c) Sau khi đã chọn 2 nhóm trình bày thứ nhất và thứ hai, có bao nhiêu cách chọn nhóm trình bày thứ ba?
d) Với mỗi cách chọn 3 nhóm như trên, giáo viên tạo ra một chỉnh hợp chập 3 của 5 phần tử. Tính số các chỉnh hợp được tạo ra.
Một lớp được chia thành 3 nhóm A, B, C để tham gia hoạt động thực hành trải nghiệm. Sau khi các nhóm thực hiện xong hoạt động, giáo viên sắp xếp thứ tự trình bày của 3 nhóm.
a) Có bao nhiêu cách chọn nhóm trình bày thứ nhất?
b) Sau khi đã chọn nhóm trình bày thứ nhất, có bao nhiêu cách chọn nhóm trình bày thứ hai?
c) Sau khi đã chọn 2 nhóm trình bày thứ nhất và thứ hai, có bao nhiêu cách chọn nhóm trình bày thứ ba?
d) Với mỗi cách chọn 3 nhóm như trên, giáo viên tạo ra một hoán vị của 3 phần tử. Tính số các hoán vị được tạo ra.
Một nhóm 22 bạn đi chụp ảnh kỉ yếu. Nhóm muốn trong bức ảnh có 7 bạn ngồi ở hàng đầu và 15 bạn đứng ở hàng sau. Có bao nhiêu cách xếp vị trí chụp ảnh như vậy?
Một lớp có 4 nhóm học tập được đặt tên là A, B, C, D. Giáo viên thực hiện hành động sau: chọn 2 nhóm trong 4 nhóm, sau đó sắp xếp thứ tự trình bày của 2 nhóm đã được chọn ra. Nêu 4 kết quả thực hiện hành động của giáo viên.
Mỗi máy tính tham gia vào mạng phải có một địa chỉ duy nhất, gọi là địa chỉ IP, nhằm định danh máy tính đó trên Internet. Xét tập hợp A gồm các địa chỉ IP có dạng “192.168.abc.deg”, trong đó a, d là các chữ số khác nhau được chọn ra từ các chữ số 1, 2, còn b, c, e, g là các chữ số đôi một khác nhau được chọn ra từ các chữ số 0, 1, 2, 3, 4, 5. Hỏi tập hợp A có bao nhiêu phần tử?
Có bao nhiêu số gồm sáu chữ số đôi một khác nhau được tạo thành từ các chữ số 1, 2, 3, 4, 5, 6?
Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, ta lập được bao nhiêu số tự nhiên:
a) Gồm 8 chữ số đội một khác nhau?
b) Gồm 6 chữ số đội một khác nhau?