Các bạn của minh và các bạn trên online math cố gắng giúp mình mấy bài này nha ai giúp được bài gì cũng được cảm ơn nhiều lắm
Toán 8 hình học
Bài : đường thẳng song song với một đường thẳng cho trước
Bài 1 . cho đoạn thẳng AB .Kẻ tia Ax bất kì . Trên tia Ax lấy các điểm C,D,E,F sao cho AC = CD = DE =EF . Kẻ đoạn thẳng FB . Qua C, D,E kẻ CC’ , DD’ , EE’ song song với FB ( C’ ,D’ ,E’ thuộc đoạn thẳng AB )
a, chứng minh AC’ = C’D’= D’E’= E’B ( bằng hai cách khác nhau )
b, cho DD’= 3 cm . Tính CC’ , FB (bằng hai cách khác nhau)
bài 2 .cho đoạn thẳng AB . hãy chia đoạn thẳng AB thành 4 đoạn thẳng bằng nhau ( bằng 2 cách khác nhau )
bài 3 cho tam giác ABC và M là điểm bất kì thuộc cạnh BC . gọi D là điểm đối xứng với A qua M . khi điểm M di chuyển trên cạnh BC thì điểm D di chuyển trên đường nào .
bài 4 cho đoạn thẳng AB và đường thẳng d song song với AB và C là điểm bất kì thuộc đường thẳng d . Gọi M , N, P lần lượt là trung điểm của các cạnh BC,AC,AB và G là giao điểm của AM , BN
a, chứng minh các điểm C ,G,P thẳng hàng
b, khi C di chuyển trên dường thẳng d thì điểm G di chuyển trên đường thẳng nào .
bài 5 cho tam giác ABC cân tại A và M là điểm bất kì thuộc cạnh BC . gọi D ,E lần lượt là chân các đường vuông góc hạ từ M tới AB , AC . KẺ BH vuông góc với AC ( H thuộc AC ) và kẻ MK vuông góc với BH ( K thuộc BH ) . chứng minh MD = BK và MD + ME = BH
BÀI 6 . Cho tam giác ABC cân tại A và M là điểm di chuyển trên cạnh BC . Chứng minh tổng khoảng cách từ M tới AB và AC luôn không đổi
Bài 7 tam giác nhọn ABC có điểm M bất kì thuộc cạnh BC. Từ M kẻ MD , ME lần lượt song song với AB, AC ( D thuộc AC , E thuộc AB ) .gọi I là trung điểm của DE .
a, chứng minh 3 điểm A,I,M thẳng hàng
b,khi M di chuyển trên cạnh BC thì I di chuyển trên đường nào ?
bài 8 Cho đoạn thẳng AB và M là điểm bất kì thuộc đoạn thẳng đó. Vẽ về một phía của AB các tam giác đều AMD , BME . Gọi I là trung điểm của đoạn thẳng DE. Khi M di chuyển trên đường thẳng AB:
a, chứng minh MI luôn đi qua giao điểm của AD , BE.
B, điểm I di chuyển trên đường nào ?
Bài 9 Cho đoạn thẳng AB bằng 6 cm và M là điểm bất kì thuộc đoạn thẳng AB . vẽ tia Mx vuông góc với AB . lấy N,P thuộc tia Mx sao cho MN = AM và MP=MB . Gọi I,K lần lượt là trung điểm của các đoạn thẳng AN , PB và O là trung điểm của đoạn thẳng IK
a, tính độ dài khoảng cách từ O tới AB
b, Gọi C là giao điểm của tia AI và tia BP. Chứng minh rằng khi M di chuyển trên đoạn thẳng AB thì C luôn cố định
c, khi điểm M di chuyển trên đoạn thẳng AB thì điểm O di chuyển trên đường nào ?
· Chú thích các bạn giúp mình bài nào cũng dc mỗi người góp chút sức giúp mình nha . trình bày khoa học đầy đủ ^-^
cho tam giác ABC . Trên nửa mặt phẳng chứa đỉnh C , Có bờ là đường thẳng AB , kẻ đường thẳng AE vuông góc với AB và AE = AB . Trên nửa mặt phẳng chứa đỉnh B có bờ là đường thẳng AC , kẻ đoạn thẳng AF vuông góc AC và AF= AC . Kẻ AD vuông góc BC ( D thuộc BC ) . EF cắt AD ở M . Chứng minh :
a, M là trung điểm của EF
b, FB vuông góc EC và FB = EC
cho tam giác ABC . Trên nửa mặt phẳng chứa đỉnh C , Có bờ là đường thẳng AB , kẻ đường thẳng AE vuông góc với AB và AE = AB . Trên nửa mặt phẳng chứa đỉnh B có bờ là đường thẳng AC , kẻ đoạn thẳng AF vuông góc AC và AF= AC . Kẻ AD vuông góc BC ( D thuộc BC ) . EF cắt AD ở M . Chứng minh :
a, M là trung điểm của EF
b, FB vuông góc EC và FB = EC
1.cho tam giác abc các đường phân giác AD,BE,CF gọi I và K là các điểm đối xứng với A qua BE,CF. Gọi G và H thứ tự thứ tự là các điểm đối xứng với B và C qua AD. CMR:GI//HK
2.Cho tam giác ABC, D thuộc BC. Lấy M thuộc AD, lấy I và K thuộc MB và Mc sao cho IB/IM=KC/KM
E là giao điểm của ID với AB. F là giao điểm của KD với AC. CMR EF//BC
cho tam giác ABC vuông tại A, đường trung tuyến AM. gọi H là điểm đối xứng với M qua AB, E là giao điểm của MH và AB. gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.
a, xác định dạng của tứ giác AEMF, AMBH, AMCK
b, chứng minh rằng H đối xứng với K qua A
c, tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Cho tam giác ABC vuông tại A, đường trung tuyến AM. gọi H là điểm đối xứng với M qua AB, E là giao điểm của MH và AB. gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC
a, xác định dạng của tứ giác AEMF, AMBH, AMCK
b, chứng minh rằng H đối xứng với K qua A
c, tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông
Bài 9 Cho đoạn thẳng AB bằng 6 cm và M là điểm bất kì thuộc đoạn thẳng AB . vẽ tia Mx vuông góc với AB . lấy N,P thuộc tia Mx sao cho MN = AM và MP=MB . Gọi I,K lần lượt là trung điểm của các đoạn thẳng AN , PB và O là trung điểm của đoạn thẳng IK
a, tính độ dài khoảng cách từ O tới AB
b, Gọi C là giao điểm của tia AI và tia BP. Chứng minh rằng khi M di chuyển trên đoạn thẳng AB thì C luôn cố định
c, khi điểm M di chuyển trên đoạn thẳng AB thì điểm O di chuyển trên đường nào ?
Cho tam giác ABC có trực tâm H.Trên nửa mặt phẳng bờ AB chứa điểm C kẽ tia Bx vuông góc với AB, trên nửa mặt phẳng bờ AC chứa điểm B kẽ tia Cy vuông góc với AC, Bx cắt Cy tại D
a) Chứng minh: tứ giác BHCD là hình bình hành.
b)Gọi I là trung điểm của BC. Chứng minh: ba điểm H,I,D thẳng hàng.
c)Đường thẳng vuông góc với BC tại I cắt AD tại K. chứng minh: AH=2IK
Hai điểm A và B thuộc cùng một nửa mặt phẳng có bờ là đường xy. Khoảng cách từ điểm A đến xy bằng 12cm, khoảng cách từ điểm B đến xy bằng 20cm. Tính khoảng cách từ trung điểm C của AB đến xy.