Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 17:38

a.

\(2cos\left(3x-\dfrac{\pi}{5}\right)=\sqrt{2}\)

\(\Leftrightarrow cos\left(3x-\dfrac{\pi}{5}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{\pi}{5}=\dfrac{\pi}{4}+k2\pi\\3x-\dfrac{\pi}{5}=-\dfrac{\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=\dfrac{9\pi}{20}+k2\pi\\3x=-\dfrac{\pi}{20}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3\pi}{20}+\dfrac{k2\pi}{3}\\x=-\dfrac{\pi}{60}+\dfrac{k2\pi}{3}\end{matrix}\right.\)

Nguyễn Việt Lâm
5 tháng 8 2021 lúc 17:39

b.

\(tanx=\sqrt{3}\)

\(\Leftrightarrow tanx=tan\left(\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)

c.

\(sinx=\dfrac{1}{2}\)

\(\Leftrightarrow sinx=sin\left(\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

Nguyễn Việt Lâm
5 tháng 8 2021 lúc 17:41

d.

\(tan\left(1^0-2x\right)=0\)

\(\Leftrightarrow1^0-2x=k180^0\)

\(\Leftrightarrow2x=1^0+k180^0\)

\(\Leftrightarrow x=0,5^0+k90^0\)

e.

\(3cot5x=\sqrt{3}\)

\(\Leftrightarrow cot5x=\dfrac{1}{\sqrt{3}}\)

\(\Leftrightarrow5x=\dfrac{\pi}{3}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{15}+\dfrac{k\pi}{5}\)

f.

\(cotx=1\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)


Các câu hỏi tương tự
9.Nguyễn Đình Đại.11A2
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết