Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hường Thị

Câu 8:Giải toán bằng cách lập phương trình, hệ phương trình Theo kế hoạch hai đội công nhân được giao làm tất cả 2400 sản phẩm. Khi làm việc đội I làm vượt mức kế hoạch 15%, đội II làm vượt mức 12% do vậy trong thời gian quy định cả hai đội sản xuất được tất cả 2733 sản phẩm. Tính số sản phẩm mỗi tố được giao theo kế hoạch. GIÚP EM VỚI Ạ

Gọi số sản phẩm tổ 1 được giao theo kế hoạch là x(sản phẩm), số sản phẩm tổ 2 được giao theo kế hoạch là y(sản phẩm)

(ĐIều kiện: \(x,y\in Z^+\))

Theo kế hoạch, hai đội được giao 2400 sản phẩm nên 

x+y=2400(1)

Số sản phẩm đội 1 làm được là x(1+15%)=1,15x(sản phẩm)

Số sản phẩm đội 2 làm được là:

y(1+12%)=1,12y(sản phẩm)

Thực tế hai đội làm được 2733 sản phẩm nên 1,15x+1,12y=2733(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+y=2400\\1,15x+1,12y=2733\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}1,15x+1,15y=2760\\1,15x+1,12y=2733\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}0,03y=27\\x+y=2400\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=900\\x=2400-900=1500\end{matrix}\right.\left(nhận\right)\)

vậy: Số sản phẩm được theo kế hoạch của đội 1 và đội 2 lần lượt là 1500 sản phẩm và 900 sản phẩm