\(5x^2-9x+4=0< =>5x^2-5x-4x+4=0< =>5x\left(x-1\right)-4\left(x-1\right)=0< =>\left(5x-4\right)\left(x-1\right)=0< =>\left[{}\begin{matrix}5x-4=0\\x-1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=1\end{matrix}\right.\)
\(5x^2-9x+4=0< =>5x^2-5x-4x+4=0< =>5x\left(x-1\right)-4\left(x-1\right)=0< =>\left(5x-4\right)\left(x-1\right)=0< =>\left[{}\begin{matrix}5x-4=0\\x-1=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=1\end{matrix}\right.\)
Câu 1: Giải phương trình và hệ phương trình sau:
a) \(x^4+3x^2-4=0\)
b) \(\left\{{}\begin{matrix}x+2y=5\\x-5y=-9\end{matrix}\right.\)
Câu 2: Trên mặt phẳng tọa độ Oxy cho điểm T (-2; -2), (P) có phương trình \(y=-8x^2\) và đường thẳng d có phương trình y = - 2x - 6
a) Điểm T có thuộc đường thẳng d không ?
b) Xác định tọa độ giao điểm của đường thẳng d và (P)
Cho phương trình : \(x^2-\left(m+2\right)x-m-3=0\) (1)
a, Giải phương trình khi m = -1
b, Tìm giá trị của m để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(x^2_1+x_2^2>1\)
Câu 2. (1,0 điểm) Cho phương trình 2x2 – 3x –
6 = 0 (1) (m là tham số)
a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt.
b) Gọi x1; x2 là hai nghiệm của phương trình (1).
Không giải phương trình, hãy tính giá trị của biểu thức: .
Câu hỏi 11 (1.5 điểm) Bài 2: (1,5đ) Cho phương trình ẩn x : (1) a) Giải phương trình (1) với m = 3 b) Tìm m để phương trình (1) luôn có nghiệm ?
Giải phương trình bằng cách đặt ẩn phụ:
a) \(2\left(x^2-2x\right)^2+3\left(x^2-2x\right)+1=0;\)
b) \(\left(x+\dfrac{1}{x}\right)^2-4\left(x+\dfrac{1}{x}\right)+3=0.\)
Cho phương trình x2 - x - 2 = 0.
a) Giải phương trình.
b) Vẽ hai đồ thị y = x2 và y = x + 2 trên cùng một hệ trục tọa độ.
c) Chứng tỏ rằng hai nghiệm tìm được trong câu a) là hoành độ giao điểm của hai đồ thị.
Giải các phương trình:
a) 3x4 - 12x2 + 9 = 0; b) 2x4 + 3x2 - 2 = 0; c) x4 + 5x2 + 1 = 0.
Giải các phương trình trùng phương :
a) \(x^4+2x^2-x+1=15x^2-x-35\)
b) \(2x^4+x^2-3=x^4+6x^2+3\)
c) \(3x^4-6x^2=0\)
d) \(5x^4-7x^2-2=3x^4-10x^2-3\)
Giải các phương trình:
a) \(5x^2-3x+1=2x+11;\) b) \(\dfrac{x^2}{5}-\dfrac{2x}{3}=\dfrac{x+5}{6};\)
c) \(\dfrac{x}{x-2}=\dfrac{10-2x}{x^2-2x};\) d) \(\dfrac{x+0,5}{3x+1}=\dfrac{7x+2}{9x^2-1};\)
e) \(2\sqrt{3}x^2+x+1=\sqrt{3}\left(x+1\right);\) f) \(x^2+2\sqrt{2}x+4=3\left(x+\sqrt{2}\right).\)