\(P=\sqrt{7}+\sqrt{3}-2\left(\sqrt{7}-\sqrt{3}-2\right)\)
\(=\sqrt{7}+\sqrt{3}-2\sqrt{7}+2\sqrt{3}+4\)
\(=-\sqrt{7}+3\sqrt{3}+4\)
\(P=\sqrt{7}+\sqrt{3}-2\left(\sqrt{7}-\sqrt{3}-2\right)\)
\(=\sqrt{7}+\sqrt{3}-2\sqrt{7}+2\sqrt{3}+4\)
\(=-\sqrt{7}+3\sqrt{3}+4\)
cho biểu thức:
\(P=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\)
a) rút gọn P.
b) tìm a để P < \(7-4\sqrt{3}\)
Rút gọn biểu thức.
a) \(\sqrt{\left(1-\sqrt{2}\right)^2}-\sqrt{3+2\sqrt{2}}+\sqrt{\left(-2\right)^6}\)
b) \(\sqrt{7+4\sqrt{3}}+\sqrt{13-4\sqrt{3}}\)
Rút gọn biểu thức \(\dfrac{\sqrt{3x^2-12x+12}-x+2}{x-2}\) khi x>2 được kết quả là:
A. \(1-\sqrt{3}\)
B. \(\sqrt{3}.\left(x-2\right)\)
C. \(\sqrt{3}-1\)
D. \(-\sqrt{3}.\left(x-2\right)\)
rút gọn các biểu thức sau:
a,\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
b,\(\sqrt{6+2\sqrt{5}-\sqrt{29-12\sqrt{5}}}\)
c,\(\sqrt{2+\sqrt{5-\sqrt{13-\sqrt{48}}}}\)
d,\(\left(3-\sqrt{5}\right)\sqrt{3+\sqrt{5}}+\left(3+\sqrt{5}\right)\sqrt{3-\sqrt{5}}\)
cho biểu thức A=\(\left(\dfrac{4x-9}{2\sqrt{x}-3}+\sqrt{x}\right)\cdot\dfrac{1}{x+2\sqrt{x}+1}\)
a)rút gọn
Rút gọn các biểu thức sau: ko tính
\(13-2\sqrt{42}\)
\(46+6\sqrt{5}\)
\(\sqrt{3-\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(\sqrt{6+2\sqrt{2}.\sqrt{3-\sqrt{4+2\sqrt{3}}}}\)
\(\sqrt[]{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
\(\frac{\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}}{\sqrt{\sqrt{7}-2}}\)
Rút gọn các biểu thức sau
a,\(A=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
b,\(B=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{3\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{2x\sqrt{x}-2x+2\sqrt{x}-3}{x\sqrt{x}+1}\)
c,\(C=\left(1-\dfrac{x+3\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{2-\sqrt{x}}+\dfrac{\sqrt{x}-2}{3+\sqrt{x}}-\dfrac{9-x}{x+\sqrt{x}-6}\right)\)
d,\(D=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right):\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
e,\(E=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
không dùng máy tính , tính giá trị của các biểu thức sau
1)\(\left(1+\sqrt{2}+\sqrt{3}\right)\cdot\left(1+\sqrt{2}+\sqrt{3}\right)\)
2)\(\dfrac{1}{\sqrt{2}+1}-\dfrac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}\)
3)\(\dfrac{2+\sqrt{3}}{\sqrt{7-4\sqrt{3}}}-\dfrac{2-\sqrt{3}}{\sqrt{7+4\sqrt{3}}}\)
4)\(\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)-\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{3}-2}\)
5)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-\sqrt{2}\)
6)\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)
Rút gọn biểu thức \(M=\frac{\sqrt{1+\sqrt{1-x^2}}\left[\sqrt{\left(1+x\right)^3}-\sqrt{\left(1-x\right)^3}\right]}{2+\sqrt{1-x^2}}\)