Xét tứ giác ECDF có:
DF=FE=EC=CD
⇒ ECDF la h.thoi
⇒AED= EAF+FDE
⇒AED=60/2+60/2=30+30=60
Xét tứ giác ECDF có:
DF=FE=EC=CD
⇒ ECDF la h.thoi
⇒AED= EAF+FDE
⇒AED=60/2+60/2=30+30=60
cho hình bình hành ABCD có BC = 2AB và góc A = 60 độ . gọi E , F theo thứ tự là trung điểm của BC và AD
a, tứ giác ECDF là hình gì . vì sao
b, tứ giác ABED là hình gì . vì sao
c, tính số đo của góc AED
( vẽ cả hình giúp mình )
Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi M là trung điểm BC . Từ M vẽ MDIAB tại D và MELAC tại E. Chứng minh : Tứ giác ADME là hình chữ nhật . b / Chứng minh : D là trung điểm đoạn AB và tứ giác BDEM là hình bình hành . c / Vẽ AH BC tại H. Gọi K là giao điểm của AH và DE . Đường thẳng DH cắt BK tại J và I là trung điểm của MK . Chứng minh : là trọng tâm AABH và ba điểm C , I , J thẳng hàng
Cho HBH ABCD có AB=AC. Gọi I là TĐ của BC, E là điểm đối xứng của A qua I
a) CM ABEC là hình thoi
b)CM D,C,E thẳng hàng
c)Tính số đo góc DAE
d)Tìm điều kiện của tam giác ADE để tứ giác ABEC trở thành hình vuông
Cho HBH ABCD có AB=AC. Gọi I là TĐ của BC, E là điểm đối xứng của A qua I
a) CM ABEC là hình thoi
b)CM D,C,E thẳng hàng
c)Tính số đo góc DAE
d)Tìm điều kiện của tam giác ADE để tứ giác ABEC trở thành hình vuông
Cho hình thang ABCD (AB // CD) có hai đường chéo cắt nhau ở O và tam giác ABO là tam giác đều. Gọi E, F, G theo thứ tự là trung điểm của các đoạn thăng OA, OD và BC. Chứng minh rằng tam giá EFG là tam giác đều ?
Cho hình vuông ABCD, I là một điểm di động trên cạnh CD. Gọi O là giao điểm AC và BD. Qua I vẽ đường thẳng song song với AC, cắt BD và AD lần lượt ở E và M. Qua I kẻ đường thẳng vuông góc với AC tại K và Cắt BC tại N.
a) Tứ giác EOKI là hình gì ?
b) Chứng minh rằng M , O , N thẳng hàng.
c) Chứng minh rằng I di động trên cạnh CD thì chu vi của EOKI không đổi .
Cho hình vuông ABCD, I là một điểm di động trên cạnh CD. Gọi O là giao điểm AC và BD. Qua I vẽ đường thẳng song song với AC, cắt BD và AD lần lượt ở E và M. Qua I kẻ đường thẳng vuông góc với AC tại K và Cắt BC tại N.
a) Tứ giác EOKI là hình gì ?
b) Chứng minh rằng M , O , N thẳng hàng.
c) Chứng minh rằng I di động trên cạnh CD thì chu vi của EOKI không đổi .
Cho hình vuông ABCD, I là một điểm di động trên cạnh CD. Gọi O là giao điểm AC và BD. Qua I vẽ đường thẳng song song với AC, cắt BD và AD lần lượt ở E và M. Qua I kẻ đường thẳng vuông góc với AC tại K và Cắt BC tại N.
a) Tứ giác EOKI là hình gì ?
b) Chứng minh rằng M , O , N thẳng hàng.
c) Chứng minh rằng I di động trên cạnh CD thì chu vi của EOKI không đổi .