Diện tích hình vuông \(ABCD\) : \(\dfrac{1}{2}\times4\times4=8\left(cm^2\right)\)
Diện tích \(\Delta DKN\) : \(\dfrac{1}{2}\times4\times4=8\left(cm^2\right)\)
Diện tích phần còn lại là: \(36-\left(8+8\right)=20\left(cm^2\right)\)
Trong \(\Delta\) vuông \(AEN\) ta có:
\(EN^2=AN^2+AE^2=4+4=8\)
\(EN=\sqrt{8}=2\sqrt{2}\left(cm\right)\)
Trong \(\Delta\) vuông \(BHE\) ta có:
\(EH^2=BE^2+BH^2=16+16=32\)
\(EH=\sqrt{32}=4\sqrt{2}\left(cm\right)\)
\(S_{ENKH}=2\sqrt{2}\times4\sqrt{2}=16\left(cm^2\right)\)
Nối đường chéo \(BD\). Théo tính chất đường thẳng song song cách đều ta có hình chữ nhật \(ENKH\) chia thành bốn phần bằng nhau nên \(S_{PQRS}\) chiếm 2 phần bằng \(8cm^2\) .
\(S_{AEPSN}=S_{AEN}+S_{EPSN}=2+\dfrac{16}{4}=6\left(cm^2\right)\)
Vậy............