Do M thuộc đường thẳng 2x-y+3=0 nên gọi M(x;2x+3)
gọi G là trọng tâm tam giác ABC
ta có G(-1;4/3)
ta chứng minh được \(3\overrightarrow{MG}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)
=> \(\overrightarrow{3MG}\)=(3.(-1-x);3(4/3-2x-3))
=(-3-x;-5-6x)
=> độ dài \(\overrightarrow{3MG}\)=\(\sqrt{\left(-3-x\right)^2+\left(-5-6x\right)^2}\)=\(\sqrt{37x^2+66x+34}=\sqrt{37\left(x^2+2\frac{33x}{37}+\frac{33^2}{37^2}+\frac{169}{1369}\right)}=\sqrt{37\left(x+\frac{33}{37}\right)^2+\frac{169}{37}}\) vậy GTNN của đọ dài tổng ba véc tơ là \(\frac{13}{\sqrt{37}}\)
đó là đọ dài véc tơ chứ không phải dấu giá trị tuyệt đối đâu nhé
nếu mình sai sót chỗ nào thì bạn cứ theo hướng đó mà làm sẽ ra thôi