Ta có: \(\dfrac{1}{299}+\dfrac{4}{299}+\dfrac{7}{299}+...+\dfrac{298}{299}\) \(=\dfrac{1+4+7+...+298}{299}\)
Tính riêng mãu ta được: \(1+4+7+...+298=\dfrac{\left[\left(298-1\right):3+1\right].\left(298+1\right)}{2}\)
\(=14950\)
Ghép vào vs mẫu ta được: \(\dfrac{14950}{299}\) \(=50\)
Vậy \(\dfrac{1}{299}+\dfrac{4}{299}+\dfrac{7}{299}+...+\dfrac{298}{299}=50\).
rối mắt quá nhá
\(\dfrac{1}{299}+\dfrac{4}{299}+\dfrac{7}{299}+...+\dfrac{298}{299}\\ =\dfrac{1+4+7+...+298}{299}\\ =\dfrac{\left(\dfrac{298-1}{3}+1\right)\cdot\left(298+1\right)}{2}:299\\ =\dfrac{100\cdot299}{2}\cdot\dfrac{1}{299}\\ =\dfrac{100\cdot299}{2\cdot299}\\ =50\)