Ta có :
C = 1.99 + 2.(99 - 1) + 3.(99 - 2) + ... + 98.(99 - 97) + 99.(99 - 98)
C = 99.(1 + 2 + 3 + ... + 98 + 99) - (2 + 2.3 + 3.4 + ...+97.98 + 98.99)
C = 99.(1 + 99).99/2 - 98.99.100/3
C = 99.50.99 - 98.33.100
C = 490050 - 323400
C = 166650
1.99+2.98+3.97+...+98.2+99.1=1.99+2.(99-1)+3.(99-2)+...+98.(99-97)+99.(99-98)
=1.99+2.99-1.2+3.99-2.3+...+98.99-97.98+99.99-98.99
=(1.99+2.99+3.99+...+98.99+99.99)-(1.2+2.3+3.4+...+98.99)
=99.(1+2+...+99)-(1.2+2.3+...+98.99)=99.4950-(1.2+2.3+...+98.99)=490050-(1.2+2.3+...+98.99)
đặt A=1.2+2.3+...+98.99
=>3A=1.2.3+2.3.3+...+98.99.3
=1.2.3+2.3.(4-1)+...+98.99.(100-97)
=1.2.3-1.2.3+2.3.4-2.3.4+...+97.98.99-97.98.99+98.99.100=98.99.100
=>A=98.99.100:3=323400
=>1.99+2.98+3.97+...+98.2+99.1=490050-323400=166650
Lời giải:
C=1.99+2.98+3.97+...+97.3+98.2+99.1
=1.99+2(99−1)+3(99−2)+...+97.(99−96)+98(99−97)+99(99−98)
=(1.99+2.99+3.99+...+97.99+98.99+99.99)−(1.2+2.3+...+96.97+97.98+98.99)
=99.(1+2+3+...+99)−(1.2+2.3+...+96.97+97.98+98.99)
=99.99.(99+1)2−(1.2+2.3+...+96.97+97.98+98.99)
=490050−(1.2+2.3+...+96.97+97.98+98.99)