Chia 3 TH của n: n=3k, n=3k+1, n=3k+2
TH1: n=3k suy ra 2n chi hết cho 3
111...1 có tổng các chữ số là n chia hết cho 3 => 111...1 chia hết cho 3
Vậy tổng chia hết cho 3
Vì 111...11(n số 1) có tổng các chữ số là n
=>111...11(n số 1) đồng dư với n (mod 3)
=>2n+111...11(n số 1) đồng dư với 2n +n=3n(mod 3)
Vì 3n chia hết cho 3
=>2n +111..11(n số 1) đồng dư với 0(mod 3)
=>2n+111...11(n số 1) chia hết cho 3(với n là STN)
Vậy với mọi n là STN thì 2n+111...11(n số 1) chia hết cho 3
Vì 111...11(n số 1) có tổng các chữ số là n
=>111...11(n số 1) đồng dư với n (mod 3)
=>2n+111...11(n số 1) đồng dư với 2n +n=3n(mod 3)
Vì 3n chia hết cho 3
=>2n +111..11(n số 1) đồng dư với 0(mod 3)
=>2n+111...11(n số 1) chia hết cho 3(với n là STN)
Vậy với mọi n là STN thì 2n+111...11(n số 1) chia hết cho 3
Ta có : 2n+1111...11111111 ( n chữ số 1 )
= \(2n+n.1=2n+n=3n⋮3\)
\(\Rightarrow\left(2n+111....1\right)⋮3\) (n chữ số 1)
Vậy \(\left(2n+1111......111111\right)⋮3\)