cho đường tròn (O; R) hai đường kính AB và CD vuông góc với nhau, trên cung nhỏ BC lấy I, IA cắt CD rại F. Tiếp tuyến tại I cắt AB tại E. a) Chứng minh ID phân giác góc AIB. b) Chứng minh 4 điểm B,I,F,O cùng thuộc 1 đường tròn. c) Tính EB,EA theo R
Cho đường tròn (O) đường kính AB=2R. Vẽ bán kính OC vuông góc với AB. Lấy điểm K thuộc cung nhỏ AC, kẻ KH vuông góc với AB tại H. Tia AC cắt HK tại I, tia BC cắt tia HK tại E, AE cắt đường tròn (O) tại F.
a) Chứng minh BHFE là tứ giác nội tiếp
b) Chứng minh BI.BF=BC.BE
c) Tính diện tích tam giác FEC theo R khi H là trung điểm của OA
d) Cho K di chuyển trên cung nhỏ AC, chứng minh đường thẳng FH luôn đi qua một điểm cố định
Cho đường tròn tâm O .Kẻ đường kính AB và CD vuông góc với nhau . Gọi E là điểm chính giữa cung nhỏ CD .EA cắt CD tại F ;ED cắt AB tại M
a/ Các tam giác CEF và EMB là những tam giác gì ?
b/ chứng minh bốn điểm D , C, M ,B thuộc đường tròn tâm E .
Cho đường tròn (O,R) đường kính AB cố định . Dây CD di động vuông góc với AB tại H giữa A và O . Lấy điểm F thuộc cung AC nhỏ ; BF cắt CD tại E , AF cắt tia DC tại l
1. Chứng minh : tứ giác AHEF nội tiếp
2. Chứng minh : HA.HB = HE.HI
3. Đường tròn nội tiếp tam giác IEF cắt AE tại M . Chứng minh M thuộc đường tròn (O,R).
4. Tìm vị trí của H trên OA để tam giác OHD có chu vi lớn nhất
Cho đường tròn (O; R), AB và CD là 2 đường kính khác nhau của đường tròn. Tiếp tuyến tại B của đường tròn (O; R) cắt các đường thẳng AC, AD thứ tự tại E và F
a, Chứng minh Tứ giác ABCD là hình chữ nhật
b, ▲ABC ∼ ▲CBE
c, Góc F = Góc CBE
cho hình vuông abcd. Gọi N là một điểm bất kỳ trên CD sao cho CN < ND. Vẽ đường tròn tâm O đường Kính BN. (o) cắt AC tại F; BF cắt AD tại M;BN cắt AC tại E. 1) Chứng minh tứ giác MEBA nội tiếp 2)Gọi giao điểm của ME và NF là Q, MN cắt (o) ở P. Chứng minh ba điểm B;Q;P thẳng hàng
Cho đường tròn tâm O bán kính R. Hai điểm C, D cùng thuộc đường tròn, B là trung điểm của cung nhỏ CD. Kẻ đường kính AB trên tia đối của tia Ab lấy điểm S, nối S với C cắt đường tròn tâm O tại M. MD cắt AB tại K, MB cắt AC tại H.
a) Chứng minh: góc BMD = góc BAC => tứ giác AMHK nội tiếp b)Chứng minh: HK song song với CD c) Chứng minh: OK.OS= R^2Cho tam giác ABC nhọn AB<AC, nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh tứ giác ABDE nội tiếp?
b) Đường kính CK của đường tròn (O) cắt DE tại M. Chứng minh CF.CK=CA.CB
c) Chứng minh tứ giác AKME nội tiếp và DE vuông góc CK tại M?
Cho đường tròn tâm O đường kính AB. Lấy điểm C nằm trên đường tròn sao cho số đo cung AC gấp đôi số đo cung CB. Tiếp tuyến tại B với đường tròn (O) cắt AC tại E. Gọi I là trung điểm của dây AC. a) Chứng minh rằng tứ giác IOBE nội tiếp b) Chứng minh EB→ = EC . EA c) Biết bán kính đường tròn (O) bằng 2cm, tính diện tích tam giác ABE. Giải giúp em với ạ