Biểu thức không phải phân thức:
\(x^2y+y\)
⇒ Chọn A
Biểu thức không phải phân thức:
\(x^2y+y\)
⇒ Chọn A
Biểu thức nào sau đây không phải là đa thức
A. \(\sqrt 2 {x^2}y\)
B. \( - \dfrac{1}{2}x{y^2} + 1\)
C. \(\dfrac{1}{{2z}}x + y\)
D. 0
Biểu thức nào sau đây không phải là đa thức bậc 4?
A. \(2{x^2}yz\)
B. \({x^4} - \dfrac{1}{3}{x^3}{y^2}\)
C. \({x^2}y + xyzt\)
D. \({x^4} - {2^5}\)
Đơn thức nào sau đây đồng dạng với đơn thức \( - 2{x^3}y\)?
A. \(\dfrac{1}{3}{x^2}yx\)
B. \(2{x^3}yz\)
C. \( - 2{x^3}z\)
D. \(3x{y^3}\)
Thực hiện các phép tính sau:
a) \(\dfrac{{2{x^2} - 1}}{{x - 2}} + \dfrac{{ - {x^2} - 3}}{{x - 2}}\)
b) \(\dfrac{x}{{x + y}} + \dfrac{y}{{x - y}}\)
c) \(\dfrac{1}{{x - 1}} - \dfrac{2}{{{x^2} - 1}}\)
d) \(\dfrac{{x + 2}}{{{x^2} + xy}} - \dfrac{{y - 2}}{{xy + {y^2}}}\)
e) \(\dfrac{1}{{2{x^2} - 3x}} - \dfrac{1}{{4{x^2} - 9}}\)
g) \(\dfrac{{2x}}{{9 - {x^2}}} + \dfrac{1}{{x - 3}} - \dfrac{1}{{x + 3}}\)
Thực hiện các phép tính sau:
a) \(\dfrac{{8y}}{{3{x^2}}} \cdot \dfrac{{9{x^2}}}{{4{y^2}}}\)
b) \(\dfrac{{3x + {x^2}}}{{{x^2} + x + 1}} \cdot \dfrac{{3{x^3} - 3}}{{x + 3}}\)
c) \(\dfrac{{2{x^2} + 4}}{{x - 3}} \cdot \dfrac{{3x + 1}}{{x - 1}}:\dfrac{{{x^2} + 2}}{{6 - 2x}}\)
d) \(\dfrac{{2{x^2}}}{{3{y^3}}}:\left( { - \dfrac{{4{x^3}}}{{21{y^2}}}} \right)\)
e) \(\dfrac{{2x + 10}}{{{x^3} - 64}}:\dfrac{{{{\left( {x + 5} \right)}^2}}}{{2x - 8}}\)
f) \(\dfrac{1}{{x + y}}\left( {\dfrac{{x + y}}{{xy}} - x - y} \right) - \dfrac{1}{{{x^2}}}:\dfrac{y}{x}\)
Cho đa thức \(P = 3{x^2}y - 2x{y^2} - 4xy + 2\).
a) Tìm đa thức \(Q\) sao cho \(Q - P = - 2{x^3}y + 7{x^2}y + 3xy\)
b) Tìm đa thức \(M\) sao cho \(P + M = 3{x^2}{y^2} - 5{x^2}y + 8xy\)
Kết quả của phép trừ \(\dfrac{2}{{{{(x + 1)}^2}}} - \dfrac{1}{{{x^2} - 1}}\) là:
A. \(\dfrac{{3 - x}}{{(x - 1){{(x + 1)}^2}}}\)
B. \(\dfrac{{x - 3}}{{(x - 1){{(x + 1)}^2}}}\)
C. \(\dfrac{{x - 3}}{{{{(x + 1)}^2}}}\)
D. \(\dfrac{1}{{(x - 1){{(x + 1)}^2}}}\)
Thực hiện các phép tính sau:
a) \(18{x^4}{y^3}:12{\left( { - x} \right)^3}y\)
b) \({x^2}{y^2} - 2x{y^3}:\left( {\dfrac{1}{2}x{y^2}} \right)\)
Khi phân tích đa thức \(R = 4{x^2} - 4xy + {y^2}\) thành nhân tử thì được:
A. \(R = {(x + 2y)^2}\)
B. \(R = {(x - 2y)^2}\)
C. \(R = {(2x + y)^2}\)
D. \(R = {(2x - y)^2}\)