Biết x , y , z khác 0 và x + y +z = 1/x + 1/y + 1/z .Chứng minh
y ( x2 - yz ) ( 1 -xz ) = x ( 1 - yz ) ( y2 - xz )
làm bài này giúp mk nha , mk hứa sẽ tích
chứng minh nếu x2−yzx(1−yz)=y2−zxy(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
chứng minh nếu x2−yzx/(1−yz)=y2−zxy/(1−xz)x2−yzx(1−yz)=y2−zxy(1−xz).Với x≠y,xyz≠0,yz≠1,xz≠1x≠y,xyz≠0,yz≠1,xz≠1 thì xy+xz+yz=xyz(x+y+z)
chứng minh nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)với x\(\ne y,xyz\ne0,yz\ne1,xz\ne1\) thì xy+yz+zx=xyz(x+y+z)
cho 3 số x,y,z nguyên dương thỏa mãn xy+yz+xz=0 chứng minh A=(x2+1)(y2+1)(z2+1) là bình phương của 1 số nguyên
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Tính A =\(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
Cho x,y,z là các số dương \(\le1\). Chứng minh rằng : \(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
GIÚP MÌNH NHA!...
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
ho x^2 + y^2 + z^2 =xy + yz + xz và z^2015 + y^2015 + z^2015=3^2016 .Tìm x,y,z