Cho tam giác abc cân tại a. Trên tia đối của bc lấy điểm d, trên tia đối của cb lấy điểm e sao cho bd=ce.
a. CM: tam giác ade ;à tam giác cân
b. Kẻ bh vuông góc với ad (h thuộc ad), kẻ ck vuông góc với ae (k thuộc ae). CML bh=ck và hk song song với bc
c. Gội là giao điểm của bh và ck. Tam giác obc là tam giác gì? ví sao?
d. M là trung điểm của bc. CMR: am, bh, ck đồng quy
Cho tam giác ABC đều,lấy điểm D trên cạnh BC sao cho BC=3BD,vẽ DE vuông góc với BC(E thuộc AB),vẽ DF vuông góc với AC(F thuộc AC).Chứng minh rằng tam giác DEF là tam giác đều
bài 5 cho tam giác ABC vuông tại A ,AB>AC trên AB lấy D sao cho AC = BD . trên AC lấy E sao cho CE = AD .CD cắt BE TẠI O . trên đường vuông góc với AB tại B lấy F sao cho BF = CE ( C,F cùng phía AB) . Hãy tính góc COE
giúp pls
cho tam giác ABC cân tại A, lấy điểm D thuộc cạnh AB, điểm E thuộc cạnh AE sao cho BD=CE. gọi I là gia điểm của BE và CD
1) Chứng minh tam giác ABE=tam giác ACD
2) Chứng minh tam giác IBC cân
3) Tia AI cắt cạnh BC tại H. Chứng minh AB^2+HI^2=AH^2+BI^2
Cho tam giác ABC cân tại A, trên cạnh BC lấy điểm D( D khác B, C). Trên tia đối của tia CB, lấy điểm E sao cho CE = BD. Đường vuông góc với BC kẻ từ D cắt BA tại M. Đường vuông góc với BC kẻ từ E cắt AC tại N. MN cắt BC tại I.
a) Chứng minh rằng DM = EN
b) Chứng minh IM = IN; BC < MN.
c) Gọi O là giao điểm của đường phân giác của góc A với MN tại I. Chứng minh rằng .
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC
cho tam giác ABC cân tại A . trên tia đối của tía BC lấy điêm D , trên tia đói của tia CB lấy điểm E sao cho BAD = CAE . Kẻ BH vuông góc với AD tại H , kẻ CK vuông góc với AE tại K . Chứng minh rằng :
a) BD=CE
b) BH = CK
c) gọi I là giao điểm của hai đường thẳng HB và CK . Chứng minh rằng AI là tia phân giác của góc BAC
Vẽ hình , càng đầy đủ càng tốt ạ