Bài 1:Cho A=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{\left(n-1\right)^2}\)+\(\frac{1}{n^2}\)
Chứng tỏ A < 1
Bài 2:So sánh
A=\(\frac{10^{213}+1}{10^{214}-1}\) và B=\(\frac{10^{2013}+1}{10^{2014}-1}\)
Bài 3:Tìm x biết:
\(\frac{x-7}{3}\)=\(\frac{4x-1}{2}\)
Giúp mình với!!Mình đang cần gấp!!Thanks!!
bài 3.\(\frac{x-7}{3}=\frac{4x-1}{2}\Leftrightarrow2x-14=12x-3\\ \Leftrightarrow10x=-11\\ \Leftrightarrow x=\frac{-11}{10}\)
Bài 1 :
ta thấy :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};......;\frac{1}{\left(n-1\right)^2}< \frac{1}{\left(n-2\right).\left(n-1\right)};\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)
=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{\left(n-2\right).\left(n-1\right)}+\frac{1}{\left(n-1\right).n}\)
mà :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{\left(n-2\right).\left(n-1\right)}+\frac{1}{\left(n-1\right).n}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\)
=\(1-\frac{1}{n}\)<1
=>A<1
Bài 3 :
\(\frac{x-7}{3}=\frac{4x-1}{2}\)
=>\(\frac{2.\left(x-7\right)}{6}=\frac{3\left(4x-1\right)}{6}\)
=>\(2\left(x-7\right)=3\left(4x-1\right)\)
=>\(x-7=\frac{3}{2}.\left(4x-1\right)\)
=>\(\frac{x-7}{4x-1}=\frac{3}{2}\)
\(=>\left\{{}\begin{matrix}x-7=3=>x=10\\4x-1=2=>4x=3=>x=\frac{3}{4}\end{matrix}\right.\)
Vậy x ∈{\(10;\frac{3}{4}\)}