a) Ta có: \(x+\dfrac{1}{3}=\dfrac{2}{6}\)
\(\Leftrightarrow x+\dfrac{1}{3}=\dfrac{1}{3}\)
hay x=0
Vậy: x=0
b) Ta có: \(x-\dfrac{1}{4}=\dfrac{1}{-2}\)
\(\Leftrightarrow x-\dfrac{1}{4}=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-1}{2}+\dfrac{1}{4}=\dfrac{-2}{4}+\dfrac{1}{4}=\dfrac{-1}{4}\)
Vậy: \(x=-\dfrac{1}{4}\)
c) Ta có: \(\dfrac{-1}{6}=\dfrac{3}{2}x\)
\(\Leftrightarrow x=\dfrac{-1}{6}:\dfrac{3}{2}=\dfrac{-1}{6}\cdot\dfrac{2}{3}\)
hay \(x=\dfrac{-1}{9}\)
Vậy: \(x=\dfrac{-1}{9}\)
\(a.x=\dfrac{1}{3}-\dfrac{1}{3}\)
\(x=0\)
\(b.x-\dfrac{1}{4}=\dfrac{-1}{2}\)
\(x=\dfrac{-1}{2}+\dfrac{1}{4}\)
\(x=\dfrac{-1}{4}\)
c. \(\dfrac{-1}{6}=\dfrac{3}{2x}\)
\(-2x=18\)
\(x=-9\)
d. \(\dfrac{4}{5}=\dfrac{-12}{9-x}\)
\(4.\left(9-x\right)=-60\)
\(9-x=-15\)
\(x=24\)
\(e.\dfrac{x+1}{3}=\dfrac{3}{x+1}\)
\(\left(x+1\right)^2=9\)
\(\left[{}\begin{matrix}x+1=-3\\x+1=3\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
f.\(\dfrac{x-1}{-4}=\dfrac{-4}{x-1}\)
\(\left(x-1\right)^2=16\)
\(\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)