a, Giải:
Đặt A = \(5+5^2+5^3+...+5^{99}\)
5A = \(5^2+5^3+...+5^{100}\)
5A - A = ( \(5^2+5^3+...+5^{100}\)) - ( \(5+5^2+5^3+...+5^{99}\))
4A = \(5^{100}-5\)
A = \(\frac{5^{100}-5}{4}\)
b, Giải:
Đặt B = \(\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{17.21}\)
4B = 4. (\(\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{17.21}\))
4B = \(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{17.21}\)
4B = \(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{17}-\frac{1}{21}\)
4B = 1 - \(\frac{1}{21}\)
4B = 20/21
B = \(\frac{\frac{20}{21}}{4}\) = 5/21