Bài 1: Tìm x,y,z
a) Đặt \(\frac{x}{6}=\frac{y}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=6k\\y=5k\end{matrix}\right.\)
Ta có: \(xy=192\)
\(\Leftrightarrow6k\cdot5k=192\)
\(\Leftrightarrow30k^2=192\)
\(\Leftrightarrow k^2=6.4\)
\(\Leftrightarrow k=\pm\frac{4\sqrt{10}}{5}\)
Ta có: \(\left\{{}\begin{matrix}x=6k\\y=5k\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\cdot\frac{\pm4\sqrt{10}}{5}=\pm\frac{24\sqrt{10}}{5}\\y=5\cdot\pm\frac{4\sqrt{10}}{5}=\pm4\sqrt{10}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)=\left\{\left(\frac{24\sqrt{10}}{5};4\sqrt{10}\right);\left(\frac{-24\sqrt{10}}{5};-4\sqrt{10}\right)\right\}\)
b) Đặt \(\frac{x}{-3}=\frac{y}{7}=a\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3a\\y=7a\end{matrix}\right.\)
Ta có: \(x^2-y^2=-360\)
\(\Leftrightarrow\left(-3a\right)^2-\left(7a\right)^2=-360\)
\(\Leftrightarrow9a^2-49a^2+360=0\)
\(\Leftrightarrow360-40a^2=0\)
\(\Leftrightarrow40a^2=360\)
\(\Leftrightarrow a^2=9\)
hay \(a=\pm3\)
Trường hợp 1: a=3
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\cdot3\\y=7\cdot3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-9\\y=21\end{matrix}\right.\)
Trường hợp 2: a=-3
\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\cdot\left(-3\right)\\y=7\cdot\left(-3\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=-21\end{matrix}\right.\)
Vậy: (x,y)={(-9;21);(9;-21)}
c) Ta có: \(\frac{x-1}{2}=\frac{y+2}{3}=\frac{z-3}{4}\)
\(\Leftrightarrow\frac{x-1}{2}=\frac{2y+4}{6}=\frac{3z-9}{12}\)
mà x-2y+3z=46
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x-1}{2}=\frac{2y+4}{6}=\frac{3z-9}{12}=\frac{x-1-2y-4+3z-9}{2-6+12}=\frac{46-14}{8}=\frac{32}{8}=4\)
Do đó:
\(\left\{{}\begin{matrix}x-1=4\cdot2=8\\2y+4=4\cdot6=24\\3z-9=4\cdot12=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\2y=20\\3z=57\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=10\\z=19\end{matrix}\right.\)
Vậy: (x,y,z)=(9;10;19)